DRAINAGE ANALYSIS

SEDIMENT AND EROSION CONTROL PLAN

"Lilac Place" 76 Portsmouth Ave. Exeter, NH 03833 Tax Map 137, Lots 4 & 75

Prepared for:

Green & Company 11 Lafayette Road North Hampton, NH 03862

Prepared by: Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885 (603) 772-4746 November 4, 2024 JBE Project No. 24029

EXECUTIVE SUMMARY

Green & Company proposes to construct a mixed-use commercial and residential development on the subject parcel as shown on the design plans with access from Portsmouth Ave. & Haven Lane in Exeter, NH.

In general, the Town of Exeter has similar drainage regulations to the AOT Bureau, with the additional stipulation that runoff from impervious surfaces shall be treated to achieve at least 80% removal of total suspended solids and 60% removal of both total nitrogen and total phosphorous for all impervious surfaces with the exception of residential roofs, which typically do not require treatment per NHDES. Through the use of several stormwater management devices including bioretention ponds, focal points, Jellyfish systems, and underground detention chambers, we are able to meet all applicable regulations for this project.

A drainage analysis of the entire site as well as offsite contributing watershed area was conducted for the purpose of estimating the peak rate of stormwater runoff and to subsequently design adequate drainage structures so that the above-mentioned requirements could be met. Two models were compiled, one for this area in its existing (pre-construction) condition, and a second for the area in its proposed (post-construction) condition. The analysis was conducted using data for the 2 Year – 24 Hour (3.70"), 10 Year – 24 Hour (5.65"), 25 Year – 24 Hour (7.18"), and 50 Year – 24 Hour (8.61") storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. These rainfall data were taken from the Extreme Precipitation Tables developed by the Northeast Regional Climate Center (NRCC) and the extreme precipitation estimates were increased by 15% due to the project's location in a Coastal/Great Bay Community. A summary of the existing and proposed conditions peak rates of runoff toward the six analysis points in units of cubic feet per second (cfs) is as follows:

Analysis Point	2 Year		10 Year		25 Year		50 Year	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Analysis Point #1	16.45	15.64	28.02	26.11	37.33	34.82	46.04	45.92
Analysis Point #2	6.42	6.39	7.42	7.34	8.17	8.14	8.89	8.89
Analysis Point #3	10.87	10.82	19.20	19.01	25.75	25.40	31.85	31.81
Analysis Point #4	0.87	0.18	1.33	0.28	1.70	0.35	2.04	0.42
Analysis Point #5	0.37	0.01	0.57	0.02	0.73	0.03	0.87	0.04
Analysis Point #6	0.45	0.42	0.76	0.73	1.01	0.97	1.24	1.20

The post-development 2-Year 24-Hour combined peak rate of runoff from all proposed stormwater management features is 1.26 cfs. Furthermore, 6,266 SF of residential roof and approximately 7,000 SF of grassed area is not directed toward a stormwater BMP post-construction. Put into a subcatchment with a 6 minute time of concentration, this contributes another 0.77 cfs of flow during the 2-year 24-hour storm event. This adds up to 1.26+0.77= **2.03 cfs** total flow from the developed area alone toward the downstream Squamscott River. A project meets channel protection requirements if 2-year 24-hour combined flow toward a downstream waterbody from the developed area for a project is less than 2 cfs, with "allowances… made for scientific uncertainty and mathematical rounding". (Env-Wq 1507.05(c)). 2.03 cfs easily rounds down to 2.0 cfs and realistically the peak flow rate will be lower, as rainfall estimates have been increased by 15% due to the project's location in a Coastal/Great Bay community. Therefore, this project meets the channel protection requirements of both the Town of Exeter and the AOT Bureau.

The use of Best Management Practices per the NHDES <u>Stormwater Manual</u> have been applied to the design of this stormwater management system and will be observed during all stages of construction. All land disturbed during construction will be stabilized within thirty days of groundbreaking and abutting property owners will suffer minimal adversity resultant to this development.

TABLE OF CONTENTS

Executive Summary

- 1.0 Rainfall Characteristics
- 2.0 Existing Conditions Analysis
- 3.0 Proposed Conditions Analysis
- 4.0 Conclusion
- Appendix I Existing Conditions Analysis

2 Year - 24 Hour Summary 10 Year - 24 Hour Complete 25 Year - 24 Hour Complete 50 Year - 24 Hour Summary

Appendix II Proposed Conditions Analysis

2 Year - 24 Hour Summary 10 Year - 24 Hour Complete 25 Year - 24 Hour Complete 50 Year - 24 Hour Summary

- Appendix III Test Pit Logs
- Appendix IV Site Specific Soil Survey and Map
- Appendix V NRCS Soil Map
- Appendix VI Extreme Precipitation Estimates
- Appendix VII Rip Rap Design Calculations
- Appendix VIII BMP and GRV Worksheets
- Appendix IX Infiltration Testing Data
- Appendix X BMP Pollutant Removal Information
- Appendix XI Stormwater Operations and Maintenance Manual
- Appendix XII Pre- and Post-Construction Watershed Plans

1.0 RAINFALL CHARACTERISTICS

This drainage report includes an existing conditions analysis of the area involved in the proposed development, as well as a proposed condition, or post-construction analysis, of the same area. These analyses were accomplished using the USDA SCS TR-20 Method within the HydroCAD 10.20-3c Stormwater Modeling System and a time span of 0-48 hours was utilized. The curve numbers were developed using the SCS TR-55 Runoff Curve numbers for Urban Areas. A Type III SCS 24-hour rainfall distribution was utilized in analyzing the data for the the 2 Year – 24 Hour (3.70"), 10 Year – 24 Hour (5.65"), 25 Year – 24 Hour (7.18"), and 50 Year – 24 Hour (8.61") storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. These rainfall data were taken from the Extreme Precipitation Tables developed by the Northeast Regional Climate Center (NRCC) and the extreme precipitation estimates were increased by 15% due to the project's location in a Coastal/Great Bay Community.

Peak rates of runoff will be reduced from the existing condition and channel protection as well as groundwater recharge requirements will be met, thereby minimizing any potential for a negative impact on wetlands or abutting properties. This is accomplished through treatment of stormwater runoff and attenuation of peak flows and volumes resulting from storm events.

2.0 EXISTING CONDITIONS ANALYSIS

In the existing condition, the front of the site is developed and consists of an Auto Parts business while the rear of the site is wooded. A deep gully separates these two parts of the subject parcel. Runoff from the area of proposed development as well as upstream contributing watershed area, collectively referred to from this point forward as the "study area", was considered in this analysis.

The existing topography as well as existing drainage features divide the study area into 6 subcatchments, draining toward six analysis points. Subcatchment 1S consists of the bulk of the existing Auto Parts development, as well as the majority of on-site woods and some offsite contributing watershed. Subcatchment 1S drains directly toward Analysis Point 1, which is the ultimate discharge point from most of the subject parcel toward the Squamscott River, far downstream.

Subcatchment 2S consists of the back parking lot and roof of the neighboring Thirsty Moose as well as some on-site wooded area. This subcatchment drains directly to Analysis Point 2. Analysis Point 2 is a stormwater collection point at the beginning of the aforemented deep gully separating the front, developed and the back, wooded sections of the subject parcel. This was modelled as an Analysis Point in order to ensure that runoff from the proposed development does not negatively impact the existing Thirsty Moose site. From Analysis Point 2, runoff follows a series of reaches, labelled as 2Sa, 2Sb, and 2Sc, toward downstream Analysis Point 1.

Subcatchment 3S consists of some wooded and wetland area in the southwestern periphery of the subject parcel as well as significant offsite contributing watershed area. This drains toward Analysis Point 3, which is modelled as a pond due to existing closed contours. Due to the existence of a 15" CMP outlet near AP2, it is assumed that a 15" CMP inlet exists for the pond modelled as AP3 and is either buried or hidden. As noted on the project plans, the contractor shall uncover this inlet during construction and notify the engineer of record if it is not found. However, the culvert is modelled in both the existing and proposed conditions analyses as we assume that it does in fact exist. We need to model this analysis point in order to verify that we are not increasing peak flows or flood stages in the existing pond, which would negatively impact the proposed development and surrounding commercial

sites if so. Discharge from the pond modelled as Analysis Point 3 is routed through the aforementioned culvert toward Analysis Point 2, and therefore ultimately toward Analysis Point 1 as previously explained.

Subcatchment 4S represents the far front area of the existing Auto Parts site, which is mostly paved and drains directly into Portsmouth Avenue. The edge of pavement for Portsmouth Avenue is modelled as Analysis Point 3, downstream of Subcatchment 4S.

Subcatchment 5S consists of the northeastern half of the existing Auto Parts store roof, which drains on to the abutting Verani Realty business, modelled as Analysis Point 5. Runoff from Analysis Point 5 is routed toward Reach 2Rb and ultimately toward downstream Analysis Point 1.

Finally Subcatchment 6S consists of a stretch of Haven Lane as well as existing abutting house lots that drain toward an existing catch basin, modelled as Analysis Point 6. This catch basin is scheduled to be relocated for the proposed development. The closed drainage system that this catch basin is a part of outlets far enough north of the development site that it will not impact the proposed development, but this subcatchment needed to be modelled in order to ensure that we are reducing peak rates of runoff into the closed drainage system and therefore the closed drainage system will not be negatively impacted by the proposed development.

Existing soil types were determined through a Site Specific Soil Survey conducted by a Certified Soil Scientist. Several different soil types were identified, with Hydrologic Soil Groupings of C and D. The soil types where infiltration systems are proposed are primarily Scitico silt loam (HSG C, SSSM symbol 33) and Boxford somewhat poorly drained (SSSM symbol 953). of Soil Scientists of Northern New England (SSSNNE), Scitico soils have a saturated hydraulic conductivity (Ksat) range of 0.0-0.2 inches per hour in both the B and C horizons, and Boxford soils have a Ksat range of 0.1-0.2 inches per hour in the B horizon and 0.00 to 0.2 inches per hour in the C horizon. Soil types per the Site-Specific Soil Survey were used for onsite areas and soil types per NRCS Web Soil Survey were used for offsite areas, which includes some areas represented as HSG B.

Ostensibly these values indicate little to no capacity for infiltration. For this reason, infiltration testing was performed on site using a Compact Constant Head Permeameter (CCHP, also known as an amoozemeter) on October 24, 2024 in order to verify the actual infiltration rate of the in-situ soils. An auger was used in order to dig test holes to the C horizon and three tests were performed in each of three locations throughout the subject parcel for a total of nine tests. These three locations corresponded with the locations of test pits 6001, 6007, and 6010.

Standard size auger holes, 4 cm in diameter were dug to the C horizon in order to obtain an accurate permeability reading below the bottom of the proposed infiltration systems. Water was then discharged through the soil and the drop in water level on the tube in which the water was stored before being discharged was recorded at several time intervals. The comparison between the drop in water level and the elapsed time from the start of the test was used to calculate the Ksat value. For example, if the water level dropped 3 cm after 5 minutes and 5 cm after 10 minutes, this was recorded and used as data to calculate the Ksat using the formulas listed in the data spreadsheets in the appendix of this report. The Ksat values from each time increment were then averaged to determine the mean Ksat, and average of the mean Ksat values between the three tests at each location was divided by a factor of safety of two in order to determine the saturated hydraulic conductivity to use for design purposes.

One outlier was recorded – A much higher mean Ksat was recorded for the first test near test pit 6010 than on the other two. This occurred because the amoozemeter was perched on top of a 2-foot high bucket, so there was too much head differential between the amoozemeter and the bottom of the test hole. For the remainder of the tests, the amoozemeter was kept at or near grade, but the results of this one test were discarded from the mean Ksat calculation.

Test	Ksat (in/hr)
TP 6010 – Test #1	4.92 (discarded)
TP 6010 – Test #2	1.50
TP 6010 – Test #3	2.54
TP 6010 – Mean Ksat	2.0
TP 6007 – Test #1	1.78
TP 6007 – Test #2	3.40
TP 6007 – Test #3	3.61
TP 6007 – Mean Ksat	2.9
TP 6001 – Test #1	3.41
TP 6001 – Test #2	3.07
TP 6001 – Test #3	3.48
TP 6001 – Mean Ksat	3.3

The results of the permeability testing are as summarized below:

A further breakdown of the data used to arrive at the final Ksat values is included in the appendix of this report. Applying a factor of safety of two, this comes out to a saturated hydraulic conductivity of **1.5 in/hr** to use for test pit 6010, **1.45 in/hr** to use for the test pit 6007, and **1.65 in/hr** to use for test pit 6001.

3.0 PROPOSED CONDITIONS ANALYSIS

If a stormwater management system were not implemented, the addition of the proposed impervious surfaces would cause an increase in the curve number (C_n) and a decrease in the time of concentration (T_c) , the net result of which would be a potential increase in peak rates of runoff from the site. A stormwater management system was designed so that peak rates of runoff would decrease toward the six analysis points and so that all other applicable regulations would be met. The proposed development divides the subject parcel into 19 subcatchments, all draining toward the same four analysis points as previously described. Subcatchments 1S-6S are functionally the same as in the existing conditions analysis in terms of their hydrologic routing, but their outlines, areas, and surface covers are altered due to the grading associated with the proposed development.

Beyond this, pond node numbers have been arbitrarily assigned for each of the proposed stormwater management devices, and a corresponding subcatchment for the land that drains to it has been developed if applicable as well. The same reaches from the existing conditions analysis have been maintained in the proposed conditions analysis, and additional reaches have been added to model overland flow from the outfall points of proposed stormwater management devices toward existing reaches or analysis points. In total, four chamber systems, two focal points, two "Jellyfish" treatment devices, a detention pond, and three bioretention systems with pre-treatment have been designed for stormwater runoff from the proposed development.

As a result of the implementation of this stormwater management system, peak flow rates are reduced toward all six analysis points during all analyzed storm events in the proposed condition as compared with the existing condition. Additionally, channel protection requirements of both the Town of Exeter and the AOT Bureau are met as explained in the executive summary. Groundwater recharge volume requirements are met as well. A GRV worksheet is available in the appendix of the report to demonstrate this. Each stormwater management device treats either the water quality volume or water quality flow of runoff directed toward it as required. All post-construction impervious surfaces on the subject parcel with the exception of some residential roofs are directed toward a treatment device, where residential roof runoff is considered to be clean per NHDES and therefore does not require treatment.

Additionally, through the implementation of this stormwater management system, the pollutant removal requirements of the Town of Exeter are met. Some impervious surfaces are directed toward bioretention systems with sediment forebays. Bioretention systems remove 90% total suspended solids and 65% of both total nitrogen and total phosphorous directed toward them per the NH Stormwater Manual. Furthermore, focal points provide similar TSS removal to a bioretention system as well as 75% TN and 76% TP when a 1" runoff depth is treated with one, according to the EPA. The Jellyfish is another device that provides similar or better pollutant removal as compared with a bioretention system. Therefore, the proposed project exceeds the Town of Exeter's requirement to provide 80% TSS and 60% TN and TP removal for runoff from impervious surfaces. Pollutant removal efficiency information is contained within the appendix of this report.

5.0 CONCLUSION

This proposed site development will have minimal adverse effect on abutting infrastructures, properties, and downstream wetlands by way of stormwater runoff or siltation. Appropriate steps will be taken to eliminate erosion and sedimentation; these will be accomplished through the construction of the aforementioned stormwater management system as well as site grading, rip rap, and temporary erosion control measures including but not limited to silt fence, erosion control blankets, culvert inlet protection check dams, and a stabilized construction entrance. Best Management Practices developed by the State of New Hampshire have been utilized in the design of this stormwater management system and their application will be enforced throughout the construction process.

This project results in more than 100,000 S.F. of disturbance and therefore it will require a NHDES Alteration of Terrain Permit.

Respectfully Submitted, JONES & BEACH ENGINEERS, INC.

Medits

Daniel Meditz, P.E Project Engineer

APPENDIX I

EXISTING CONDITIONS DRAINAGE ANALYSIS

Summary 2 YEAR Complete 10 YEAR Complete 25 YEAR Summary 50 YEAR

24029 EX CONDITION Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.728	83	1/4 acre lots, 38% imp, HSG C (1S, 3S)
0.549	74	>75% Grass cover, Good, HSG C (1S, 2S, 3S, 6S)
0.247	98	Paved parking, HSG C (4S)
0.022	98	Paved roads w/curbs & sewers, HSG B (1S)
4.559	98	Paved roads w/curbs & sewers, HSG C (1S, 2S, 3S, 6S)
0.741	98	Roofs, HSG C (1S, 2S, 3S, 5S, 6S)
0.119	98	Water Surface, 0% imp, HSG D (3S)
0.076	55	Woods, Good, HSG B (1S)
6.903	70	Woods, Good, HSG C (1S, 2S, 3S)
1.018	77	Woods, Good, HSG D (1S, 3S)
15.961	82	TOTAL AREA

24029 EX CONDITION

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.098	HSG B	1S
14.727	HSG C	1S, 2S, 3S, 4S, 5S, 6S
1.137	HSG D	1S, 3S
0.000	Other	
15.961		TOTAL AREA

24029 EX CONDITIONType III 24-hr2-Year Storm Rainfall=3.70"Prepared by Jones & Beach Engineers IncPrinted11/4/2024HydroCAD® 10.20-3cs/n 00762© 2023 HydroCAD Software Solutions LLCPage 4

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=358,038 sf 25.16% Impervious Runoff Depth=1.65" Flow Length=919' Tc=21.9 min CN=78 Runoff=10.18 cfs 1.131 af
Subcatchment2S: Subcatchment2S	Runoff Area=17,152 sf 51.10% Impervious Runoff Depth=2.19" Flow Length=142' Tc=13.6 min CN=85 Runoff=0.79 cfs 0.072 af
Subcatchment3S: Subcatchment3S	Runoff Area=296,381 sf 51.37% Impervious Runoff Depth=2.28" Flow Length=604' Tc=26.3 min CN=86 Runoff=10.87 cfs 1.291 af
Subcatchment4S: Subcatchment4S	Runoff Area=10,753 sf 100.00% Impervious Runoff Depth=3.47" Tc=6.0 min CN=98 Runoff=0.87 cfs 0.071 af
Subcatchment5S: Subcatchment5S	Runoff Area=4,596 sf 100.00% Impervious Runoff Depth=3.47" Tc=6.0 min CN=98 Runoff=0.37 cfs 0.030 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,360 sf 56.70% Impervious Runoff Depth=2.45" Flow Length=173' Tc=12.2 min CN=88 Runoff=0.45 cfs 0.039 af
Reach 1R: Flow through 2S n=0.030	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=236.0' S=0.0233 '/' Capacity=430.82 cfs Outflow=0.00 cfs 0.000 af
Reach 2Ra: Channel through 1S n=0.040 L:	Avg. Flow Depth=0.54' Max Vel=3.24 fps Inflow=6.42 cfs 1.363 af =136.0' S=0.0294 '/' Capacity=1,586.21 cfs Outflow=6.42 cfs 1.363 af
Reach 2Rb: Channel through 1S n=0.040 L:	Avg. Flow Depth=0.15' Max Vel=2.10 fps Inflow=6.49 cfs 1.393 af =153.0' S=0.0392 '/' Capacity=4,170.50 cfs Outflow=6.49 cfs 1.393 af
Reach 2Rc: Channel through 1S n=0.040 L:	Avg. Flow Depth=0.20' Max Vel=1.60 fps Inflow=6.49 cfs 1.393 af =303.0' S=0.0165 '/' Capacity=2,705.34 cfs Outflow=6.49 cfs 1.393 af
Reach AP1: Analysis Point 1	Inflow=16.45 cfs 2.524 af Outflow=16.45 cfs 2.524 af
Reach AP2: Analysis Point 2	Inflow=6.42 cfs 1.363 af Outflow=6.42 cfs 1.363 af
Reach AP4: Analysis Point 4	Inflow=0.87 cfs 0.071 af Outflow=0.87 cfs 0.071 af
Reach AP5: Analysis Point 5	Inflow=0.37 cfs 0.030 af Outflow=0.37 cfs 0.030 af
Reach AP6: Analysis Point 6	Inflow=0.45 cfs 0.039 af Outflow=0.45 cfs 0.039 af
Pond AP3: Existing Pond Primary=6.18	Peak Elev=31.38' Storage=6,854 cf Inflow=10.87 cfs 1.291 af 3 cfs 1.291 af 5 econdary=0.00 cfs 0.000 af Outflow=6.18 cfs 1.291 af

Total Runoff Area = 15.961 ac Runoff Volume = 2.634 af Average Runoff Depth = 1.98" 61.00% Pervious = 9.736 ac 39.00% Impervious = 6.225 ac

24029 EX CONDITION	Type III 24-hr 10-Year Storm	Rainfall=5.65"
Prepared by Jones & Beach Engineers Inc	Print	ed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software	Solutions LLC	Page 6

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=358,038 sf 25.16% Impervious Runoff Depth=3.27" Flow Length=919' Tc=21.9 min CN=78 Runoff=20.42 cfs 2.241 af
Subcatchment2S: Subcatchment2S	Runoff Area=17,152 sf 51.10% Impervious Runoff Depth=3.97" Flow Length=142' Tc=13.6 min CN=85 Runoff=1.41 cfs 0.130 af
Subcatchment3S: Subcatchment3S	Runoff Area=296,381 sf 51.37% Impervious Runoff Depth=4.08" Flow Length=604' Tc=26.3 min CN=86 Runoff=19.20 cfs 2.312 af
Subcatchment4S: Subcatchment4S	Runoff Area=10,753 sf 100.00% Impervious Runoff Depth=5.41" Tc=6.0 min CN=98 Runoff=1.33 cfs 0.111 af
Subcatchment5S: Subcatchment5S	Runoff Area=4,596 sf 100.00% Impervious Runoff Depth=5.41" Tc=6.0 min CN=98 Runoff=0.57 cfs 0.048 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,360 sf 56.70% Impervious Runoff Depth=4.29" Flow Length=173' Tc=12.2 min CN=88 Runoff=0.76 cfs 0.069 af
Reach 1R: Flow through 2S n=0.030	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=236.0' S=0.0233 '/' Capacity=430.82 cfs Outflow=0.00 cfs 0.000 af
Reach 2Ra: Channel through 1S n=0.040 L	Avg. Flow Depth=0.59' Max Vel=3.37 fps Inflow=7.42 cfs 2.442 af .=136.0' S=0.0294 '/' Capacity=1,586.21 cfs Outflow=7.42 cfs 2.442 af
Reach 2Rb: Channel through 1S n=0.040 L	Avg. Flow Depth=0.17' Max Vel=2.22 fps Inflow=7.62 cfs 2.490 af .=153.0' S=0.0392 '/' Capacity=4,170.50 cfs Outflow=7.61 cfs 2.490 af
Reach 2Rc: Channel through 1S n=0.040 L	Avg. Flow Depth=0.22' Max Vel=1.70 fps Inflow=7.61 cfs 2.490 af .=303.0' S=0.0165 '/' Capacity=2,705.34 cfs Outflow=7.61 cfs 2.490 af
Reach AP1: Analysis Point 1	Inflow=28.02 cfs 4.731 af Outflow=28.02 cfs 4.731 af
Reach AP2: Analysis Point 2	Inflow=7.42 cfs 2.442 af Outflow=7.42 cfs 2.442 af
Reach AP4: Analysis Point 4	Inflow=1.33 cfs 0.111 af Outflow=1.33 cfs 0.111 af
Reach AP5: Analysis Point 5	Inflow=0.57 cfs 0.048 af Outflow=0.57 cfs 0.048 af
Reach AP6: Analysis Point 6	Inflow=0.76 cfs 0.069 af Outflow=0.76 cfs 0.069 af
Pond AP3: Existing Pond	Peak Elev=33.12' Storage=22.218 cf Inflow=10.20 cfs .2.312 af

Pond AP3: Existing Pond Peak Elev=33.12' Storage=22,218 cf Inflow=19.20 cfs 2.312 af Primary=7.01 cfs 2.312 af Secondary=0.00 cfs 0.000 af Outflow=7.01 cfs 2.312 af

Total Runoff Area = 15.961 ac Runoff Volume = 4.911 af Average Runoff Depth = 3.69" 61.00% Pervious = 9.736 ac 39.00% Impervious = 6.225 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 20.42 cfs @ 12.30 hrs, Volume= Routed to Reach AP1 : Analysis Point 1 2.241 af, Depth= 3.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

_	A	rea (sf)	CN [Description						
		3,301	55 \	Noods, Go	od, HSG B					
		960	98 F	Paved roads w/curbs & sewers, HSG B						
		16,400	98 F	Roofs, HSG	ЭC					
		61,667	98 F	Paved road	s w/curbs &	& sewers, HSG C				
		10,167	74 >	>75% Gras	s cover, Go	bod, HSG C				
	2	07,826	70 \	Noods, Go	od, HSG C					
		29,047	83 î	1/4 acre lot	s, 38% imp	, HSG C				
_		28,670	77 \	Noods, Go	od, HSG D					
	3	58,038	78 \	Neighted A	verage					
	2	67,973	7	74.84% Pei	rvious Area					
		90,065	2	25.16% Imp	pervious Ar	ea				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	11.9	50	0.0183	0.07		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.69"				
	2.8	114	0.0183	0.68		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	1.9	88	0.0227	0.75		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	1.0	56	0.0357	0.94		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	1.5	73	0.0274	0.83		Shallow Concentrated Flow,				
		400		4.00		Woodland Kv= 5.0 fps				
	1.7	136	0.0735	1.36		Shallow Concentrated Flow,				
	0.0	00	0 0000	0.54	040.00	Woodland KV= 5.0 fps				
	0.2	99	0.0392	8.51	312.68	Trap/vee/Rect Channel Flow, Assumed 1.5' flow depth - Channe				
						Bot. $W=20.00^{\circ}$ D=1.50° Z= 4.0 & 2.0 7° Top. $W=29.00^{\circ}$				
	0.0	202	0.0465	5 50		n= 0.040 Winding stream, pools & shoals				
	0.9	303	0.0105	5.52	202.00	Trap/vee/Reci Channel Flow, Assumed 1.5 flow depth - Channel Ret W=20.00' D=1.50' Z= 4.0.8 2.0.1' Ten W=20.00'				
						D01.00 - 20.00 D - 1.30 Z - 4.0 & 2.0 / 10p.00 - 29.00 = 0.040 Winding stream pools 8 sheets				
_	04.0	040	Tatal			11 - 0.040 winding stream, pools & shoals				
	21.9	919	iotai							

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 1.41 cfs @ 12.19 hrs, Volume= 0.130 af, Depth= 3.97" Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

24029 EX CONDITION

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 9

Prepared by Jones	& Beach	Engineers Inc	
HydroCAD® 10.20-3c	s/n 00762	© 2023 HydroCAD	Software Solutions LLC

A	rea (sf)	CN I	Description					
	7,339	98 I	98 Paved roads w/curbs & sewers, HSG C					
	1,425	98 I	Roofs, HSG	ЭС				
	923	74 >	>75% Gras	s cover, Go	bod, HSG C			
	7,465	70 \	Noods, Go	od, HSG C				
	17,152	85 \	Neighted A	verage				
	8,388	4	18.90% Pe	rvious Area				
	8,764	Ę	51.10% Imp	pervious Ar	ea			
			-					
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.2	50	0.0172	0.07		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.69"			
0.9	37	0.0172	0.66		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.2	19	0.1053	1.62		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.3	36	0.2222	2.36		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
13.6	142	Total						

Summary for Subcatchment 3S: Subcatchment 3S

Runoff	=	19.20 cfs @	12.36 hrs,	Volume=	2.312 af,	Depth= 4.08"
Routed	d to Por	nd AP3 : Existir	ng Pond			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

Area (sf)	CN	Description
125,302	98	Paved roads w/curbs & sewers, HSG C
9,379	98	Roofs, HSG C
9,203	74	>75% Grass cover, Good, HSG C
85,401	70	Woods, Good, HSG C
46,241	83	1/4 acre lots, 38% imp, HSG C
15,690	77	Woods, Good, HSG D
5,165	98	Water Surface, 0% imp, HSG D
296,381	86	Weighted Average
144,128		48.63% Pervious Area
152,253		51.37% Impervious Area

24029 EX CONDITION

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 10

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.5	50	0.0200	0.07		Sheet Flow,
3.5	119	0.0126	0.56		Woods: Light underbrush n= 0.400 P2= 3.69" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.5	74	0.0270	0.82		Shallow Concentrated Flow,
2.6	107	0.0187	0.68		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps
5.7	180	0.0111	0.53		Shallow Concentrated Flow,
1.5	74	0.0270	0.82		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps

26.3 604 Total

Summary for Subcatchment 4S: Subcatchment 4S

0.111 af, Depth= 5.41"

Runoff = 1.33 cfs @ 12.09 hrs, Volume= Routed to Reach AP4 : Analysis Point 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

Area (sf)	CN	Description					
10,753	98	98 Paved parking, HSG C					
10,753		100.00% Impervious Area					
Tc Length (min) (feet)	Slop (ft/l	e Velocity t) (ft/sec)	Capacity (cfs)	Description			
6.0				Direct Entry, 6 minute minimum Tc per TR-55			

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 0.57 cfs @ 12.09 hrs, Volume= 0.048 af, Depth= 5.41" Routed to Reach AP5 : Analysis Point 5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

A	rea (sf)	CN	Description		
	4,596	98	Roofs, HSC	ЭC	
	4,596		100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, 6 minute minimum Tc per TR-55

Summary for Subcatchment 6S: Subcatchment 6S

Runoff = 0.76 cfs @ 12.16 hrs, Volume= 0.069 af, Depth= 4.29" Routed to Reach AP6 : Analysis Point 6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

A	rea (sf)	CN	Description					
	4,261	98	Paved roads w/curbs & sewers, HSG C					
	479	98	Roofs, HSC	ЭC				
	3,620	74	>75% Gras	s cover, Go	bod, HSG C			
	8,360	88	Weighted A	verage				
	3,620		43.30% Pe	rvious Area	L			
	4,740	:	56.70% Im	pervious Ar	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
9.9	50	0.0041	0.08		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.69"			
1.7	47	0.0041	0.45		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
0.6	76	0.0100	2.03		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
10.0	4 - 0							

12.2 173 Total

Summary for Reach 1R: Flow through 2S

Inflow	=	0.00 cfs @	0.00 hrs,	Volume=	0.000 af		
Outflow	=	0.00 cfs @	0.00 hrs,	Volume=	0.000 af,	Atten= 0%,	Lag= 0.0 min
Routed	to Reac	h AP2 : Analys	sis Point 2				•

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.00' Flow Area= 74.7 sf, Capacity= 430.82 cfs

112.00' x 1.00' deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 236.0' Slope= 0.0233 '/' Inlet Invert= 35.50', Outlet Invert= 30.00'

‡

Summary for Reach 2Ra: Channel through 1S

Inflow Area = 7.198 ac, 51.36% Impervious, Inflow Depth = 4.07" for 10-Year Storm event Inflow 7.42 cfs @ 12.44 hrs. Volume= 2.442 af = 7.42 cfs @ 12.45 hrs, Volume= 2.442 af, Atten= 0%, Lag= 0.5 min Outflow = Routed to Reach 2Rb : Channel through 1S Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.37 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.77 fps, Avg. Travel Time= 1.3 min Peak Storage= 299 cf @ 12.45 hrs Average Depth at Peak Storage= 0.59', Surface Width= 5.51' Bank-Full Depth= 6.00' Flow Area= 120.0 sf, Capacity= 1,586.21 cfs 2.00' x 6.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 4.0 2.0 '/' Top Width= 38.00' Length= 136.0' Slope= 0.0294 '/' Inlet Invert= 24.00', Outlet Invert= 20.00'

Summary for Reach 2Rb: Channel through 1S

[61] Hint: Exceeded Reach 2Ra outlet invert by 0.17' @ 12.30 hrs

Inflow Area = 7.303 ac, 52.06% Impervious, Inflow Depth = 4.09" for 10-Year Storm event Inflow = 7.62 cfs @ 12.27 hrs, Volume= 2.490 af Outflow = 7.61 cfs @ 12.28 hrs, Volume= 2.490 af, Atten= 0%, Lag= 0.9 min Routed to Reach 2Rc : Channel through 1S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.22 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.25 fps, Avg. Travel Time= 2.0 min

Peak Storage= 525 cf @ 12.28 hrs Average Depth at Peak Storage= 0.17', Surface Width= 21.00' Bank-Full Depth= 6.00' Flow Area= 228.0 sf, Capacity= 4,170.50 cfs

20.00' x 6.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 4.0 2.0 '/' Top Width= 56.00' Length= 153.0' Slope= 0.0392 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	7.198 ac, 5	1.36% Impe	ervious,	Inflow Dep	th = 4	.07" for	10-Year S	storm event
Inflow	=	7.42 cfs @	12.44 hrs,	Volume	= 2	2.442 af			
Outflow	=	7.42 cfs @	12.44 hrs,	Volume	= 2	2.442 af	, Atten= 0)%, Lag=	0.0 min
Routed	to Reac	h 2Ra : Char	nnel through	n 1S					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.247 ac,10	0.00% Impe	ervious,	Inflow Depth	h= 5.	41" for 10	-Year Storm	event
Inflow	=	1.33 cfs @	12.09 hrs,	Volume	= 0.1	111 af			
Outflow	=	1.33 cfs @	12.09 hrs,	Volume	= 0.1	111 af,	Atten= 0%	,Lag= 0.0 mi	n

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP5: Analysis Point 5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.106 ac,10	0.00% Imper	vious,	Inflow Depth =	5.41"	for 10	-Year Sto	orm event
Inflow	=	0.57 cfs @	12.09 hrs, V	/olume	= 0.048	af			
Outflow	=	0.57 cfs @	12.09 hrs, V	/olume	= 0.048	af, Atte	en= 0%,	Lag= 0.	0 min
Routed	d to Read	ch 2Rb : Char	nnel through '	1S					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP6: Analysis Point 6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.192 ac, 56.70% Impervic	ous, Inflow Depth = 4	1.29" for 10-Year Storm event
Inflow	=	0.76 cfs @ 12.16 hrs, Vol	ume= 0.069 a	f
Outflow	=	0.76 cfs @ 12.16 hrs, Volu	ume= 0.069 a	f, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Pond AP3: Existing Pond

15" CMP culvert inlet is buried. Contractor to uncover culvert inlet.

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=46)

24029 EX CONDITION Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software 3					Type III 24-hr Solutions LLC	<i>10-Year Storm Rai</i> Printed	n fall=5.65″ 11/4/2024 <u>Page 15</u>
Inflow An Inflow Outflow Primary Route Seconda Routing Peak Ele	rea = = 19 = 7 ed to Reach ary = (ed to Reach by Dyn-Stor ev= 33.12' @	6.804 ac, 5 9.20 cfs @ 7.01 cfs @ 7.01 cfs @ AP2 : Ana 9.00 cfs @ 1R : Flow -Ind metho 9 12.86 hrs	51.37% li 12.36 h 12.86 h 12.86 h 12.86 h lysis Poir 0.00 h through 2 od, Time 3 5 Surf.Ar	mpervious, Inflow I rs, Volume= rs, Volume= nt 2 rs, Volume= 2S Span= 0.00-48.00 H rea= 13,489 sf Sto	Depth = 4.08" 2.312 af 2.312 af, Atte 2.312 af 0.000 af 0.000 af hrs, dt= 0.05 hrs prage= 22,218 cf	for 10-Year Storm e n= 63%, Lag= 30.2 i	event min
Plug-Flo Center-c Volume	w detention of-Mass det. Invert	time= (not time= 18.9 Avail.9	calculate min (83 Storage	ed: outflow precede 87.6 - 818.7) Storage Descriptio	s inflow) on		
#1	26.00'	104	l,430 cf	Custom Stage Da	ata (Irregular)Lis	ted below (Recalc)	
Elevatio (fee	on Si et)	urf.Area (sg-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sɑ-ft)	
26.0 28.0 30.0 32.0)0)0)0)0	1 37 2,236 7,294	1.0 24.0 218.0 444.0	0 29 1,707 9,046	0 29 1,736 10,782	1 53 3,797 15,721	
34.0 35.5 36.0	00 50 00	19,719 43,192 43,192	933.0 1,107.0 1,107.0	26,004 46,047 21,596	36,786 82,834 104,430	69,323 97,611 98,164	
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary Secondary	26.0 35.5	0' 15.0 L= 1 Inlet n= 0 60' 24.0 Head Coet	" Round Culvert 56.0' CMP, projec / Outlet Invert= 26. .025 Corrugated m ' long + 3.0 '/' Side d (feet) 0.20 0.40 f. (English) 2.68 2.	ting, no headwal 00' / 24.09' S= hetal, Flow Areas e Z x 24.0' bread 0.60 0.80 1.00 70 2.70 2.64 2	I, Ke= 0.900 0.0122 '/' Cc= 0.900 = 1.23 sf 3th Broad-Crested F 1.20 1.40 1.60 .63 2.64 2.64 2.63	Rectangular Wei
Primary		lax=7 01 c	fe @ 12 8	36 brs H\W=33 12'	TW=0.00' (Dvr	amic Tailwater)	

Primary OutFlow Max=7.01 cfs @ 12.86 hrs HW=33.12' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 7.01 cfs @ 5.71 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=26.00' TW=35.50' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

24029 EX CONDITION	Type III 24-hr 25-Year Storm Rainfall=7.18
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software	e Solutions LLC Page 16

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=358,038 sf 25.16% Impervious Runoff Depth=4.64" Flow Length=919' Tc=21.9 min CN=78 Runoff=28.84 cfs 3.177 af
Subcatchment2S: Subcatchment2S	Runoff Area=17,152 sf 51.10% Impervious Runoff Depth=5.42" Flow Length=142' Tc=13.6 min CN=85 Runoff=1.90 cfs 0.178 af
Subcatchment3S: Subcatchment3S	Runoff Area=296,381 sf 51.37% Impervious Runoff Depth=5.54" Flow Length=604' Tc=26.3 min CN=86 Runoff=25.75 cfs 3.141 af
Subcatchment4S: Subcatchment4S	Runoff Area=10,753 sf 100.00% Impervious Runoff Depth=6.94" Tc=6.0 min CN=98 Runoff=1.70 cfs 0.143 af
Subcatchment5S: Subcatchment5S	Runoff Area=4,596 sf 100.00% Impervious Runoff Depth=6.94" Tc=6.0 min CN=98 Runoff=0.73 cfs 0.061 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,360 sf 56.70% Impervious Runoff Depth=5.77" Flow Length=173' Tc=12.2 min CN=88 Runoff=1.01 cfs 0.092 af
Reach 1R: Flow through 2S n=0.030	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=236.0' S=0.0233 '/' Capacity=430.82 cfs Outflow=0.00 cfs 0.000 af
Reach 2Ra: Channel through 1S n=0.040 L	Avg. Flow Depth=0.61' Max Vel=3.46 fps Inflow=8.17 cfs 3.319 af =136.0' S=0.0294 '/' Capacity=1,586.21 cfs Outflow=8.17 cfs 3.319 af
Reach 2Rb: Channel through 1S n=0.040 L	Avg. Flow Depth=0.18' Max Vel=2.30 fps Inflow=8.54 cfs 3.380 af =153.0' S=0.0392 '/' Capacity=4,170.50 cfs Outflow=8.53 cfs 3.380 af
Reach 2Rc: Channel through 1S n=0.040 L	Avg. Flow Depth=0.23' Max Vel=1.77 fps Inflow=8.53 cfs 3.380 af =303.0' S=0.0165 '/' Capacity=2,705.34 cfs Outflow=8.51 cfs 3.380 af
Reach AP1: Analysis Point 1	Inflow=37.33 cfs 6.557 af Outflow=37.33 cfs 6.557 af
Reach AP2: Analysis Point 2	Inflow=8.17 cfs 3.319 af Outflow=8.17 cfs 3.319 af
Reach AP4: Analysis Point 4	Inflow=1.70 cfs 0.143 af Outflow=1.70 cfs 0.143 af
Reach AP5: Analysis Point 5	Inflow=0.73 cfs 0.061 af Outflow=0.73 cfs 0.061 af
Reach AP6: Analysis Point 6	Inflow=1.01 cfs 0.092 af Outflow=1.01 cfs 0.092 af
Pond AP3: Existing Pond	Peak Elev=33 99' Storage=36 586 cf Inflow=25 75 cfs 3 141 af

ond AP3: Existing PondPeak Elev=33.99' Storage=36,586 cfInflow=25.75 cfs3.141 afPrimary=7.39 cfs3.141 afSecondary=0.00 cfs0.000 afOutflow=7.39 cfs3.141 af

Total Runoff Area = 15.961 ac Runoff Volume = 6.792 af Average Runoff Depth = 5.11" 61.00% Pervious = 9.736 ac 39.00% Impervious = 6.225 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 28.84 cfs @ 12.30 hrs, Volume= Routed to Reach AP1 : Analysis Point 1 3.177 af, Depth= 4.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

_	A	rea (sf)	CN [Description									
		3,301	55 \	Noods, Go	od, HSG B								
		960	0 98 Paved roads w/curbs & sewers, HSG B										
		16,400	98 F	Roofs, HSG C									
		61,667	98 F	Paved road	s w/curbs &	& sewers, HSG C							
		10,167	0,167 74 >75% Grass cover, Good, HSG C										
	2	07,826	70 \	Noods, Go	od, HSG C								
		29,047	83 î	1/4 acre lot	s, 38% imp	, HSG C							
_		28,670	77 \	Noods, Go	od, HSG D								
	3	58,038	78 \	Neighted A	verage								
	2	67,973	7	74.84% Pei	rvious Area								
		90,065	2	25.16% Imp	pervious Ar	ea							
	Tc	Length	Slope	Velocity	Capacity	Description							
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	11.9	50	0.0183	0.07		Sheet Flow,							
						Woods: Light underbrush n= 0.400 P2= 3.69"							
	2.8	114	0.0183	0.68		Shallow Concentrated Flow,							
						Woodland Kv= 5.0 fps							
	1.9	88	0.0227	0.75		Shallow Concentrated Flow,							
						Woodland Kv= 5.0 fps							
	1.0	56	0.0357	0.94		Shallow Concentrated Flow,							
						Woodland Kv= 5.0 fps							
	1.5	73	0.0274	0.83		Shallow Concentrated Flow,							
		400		4.00		Woodland Kv= 5.0 fps							
	1.7	136	0.0735	1.36		Shallow Concentrated Flow,							
	0.0	00	0 0000	0.54	040.00	Woodland KV= 5.0 fps							
	0.2	99	0.0392	8.51	312.68	Trap/vee/Rect Channel Flow, Assumed 1.5' flow depth - Channe							
						Bot. $W=20.00^{\circ}$ D=1.50° Z= 4.0 & 2.0 7° Top. $W=29.00^{\circ}$							
	0.0	202	0.0465	5 50		n= 0.040 Winding stream, pools & shoals							
	0.9	303	0.0105	5.52	202.00	Trap/vee/Reci Channel Flow, Assumed 1.5 flow depth - Channel Ret W=20.00' D=1.50' Z= 4.0.8 2.0.1' Ten W=20.00'							
						D01.00 - 20.00 D - 1.30 Z - 4.0 & 2.0 / 10p.00 - 29.00 = 0.040 Winding stream people & sheels							
_	04.0	040	Tatal			11 - 0.040 winding stream, pools & shoals							
	21.9	919	iotai										

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 1.90 cfs @ 12.18 hrs, Volume= 0.178 af, Depth= 5.42" Routed to Reach AP2 : Analysis Point 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

24029 EX CONDITION

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 19

Prepared by Jones	& Beach	Engineers Inc	
HydroCAD® 10.20-3c	s/n 00762	© 2023 HydroCAI	D Software Solutions LLC

А	rea (sf)	CN I	Description										
	7 339	98	98 Paved roads w/curbs & sewers, HSG C										
	1,425	98	8 Roofs, HSG C										
	923	74	>75% Grass cover, Good, HSG C										
	7,465	70	Noods, Good, HSG C										
	17,152	85	Weighted A	verage									
	8,388	4	48.90% Pe	rvious Area									
	8,764	!	51.10% Imp	pervious Ar	ea								
Tc	Length	Slope	Velocity	Capacity	Description								
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
12.2	50	0.0172	0.07		Sheet Flow,								
					Woods: Light underbrush n= 0.400 P2= 3.69"								
0.9	37	0.0172	0.66		Shallow Concentrated Flow,								
					Woodland Kv= 5.0 fps								
0.2	19	0.1053	1.62		Shallow Concentrated Flow,								
0.0	00	0 0000	0.00		Woodland Kv= 5.0 fps								
0.3	36	0.2222	2.36		Shallow Concentrated Flow,								
					vvoodiand KV= 5.0 Ips								
13.6	142	Total											

Summary for Subcatchment 3S: Subcatchment 3S

Runoff	=	25.75 cfs @	12.35 hrs,	Volume=	3.141 af,	Depth= 5.54"
Routed	d to Po	nd AP3 : Existir	ng Pond			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

Area (sf)	CN	Description
125,302	98	Paved roads w/curbs & sewers, HSG C
9,379	98	Roofs, HSG C
9,203	74	>75% Grass cover, Good, HSG C
85,401	70	Woods, Good, HSG C
46,241	83	1/4 acre lots, 38% imp, HSG C
15,690	77	Woods, Good, HSG D
5,165	98	Water Surface, 0% imp, HSG D
296,381	86	Weighted Average
144,128		48.63% Pervious Area
152,253		51.37% Impervious Area

24029 EX CONDITION

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 20

Prepared by Jones	& Beach	Engineers Inc	
HydroCAD® 10.20-3c	s/n 00762	© 2023 HydroCAD	Software Solutions LL

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.5	50	0.0200	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.69"
3.5	119	0.0126	0.56		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.5	74	0.0270	0.82		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.6	107	0.0187	0.68		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
5.7	180	0.0111	0.53		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.5	74	0.0270	0.82		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps

26.3 604 Total

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 1.70 cfs @ 12.09 hrs, Volume= Routed to Reach AP4 : Analysis Point 4 0.143 af, Depth= 6.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

Area (sf)	CN	Description				
10,753	98	Paved park	ing, HSG C			
10,753	10,753 100.00% Impervious Area					
Tc Length (min) (feet)	Slop (ft/l	e Velocity t) (ft/sec)	Capacity (cfs)	Description		
6.0				Direct Entry, 6 minute minimum Tc per TR-55		

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 0.73 cfs @ 12.09 hrs, Volume= 0.061 af, Depth= 6.94" Routed to Reach AP5 : Analysis Point 5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

A	rea (sf)	CN	Description					
	4,596	98	Roofs, HSC	G C				
	4,596	4,596 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, 6 minute minimum Tc per TR-55			

Summary for Subcatchment 6S: Subcatchment 6S

Runoff = 1.01 cfs @ 12.16 hrs, Volume= 0.092 af, Depth= 5.77" Routed to Reach AP6 : Analysis Point 6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

	A	rea (sf)	CN	Description									
		4,261	98	98 Paved roads w/curbs & sewers, HSG C									
		479	98	Roofs, HSC	Roofs, HSG C								
		3,620	74	>75% Gras	75% Grass cover, Good, HSG C								
		8,360	88	Weighted A	verage								
		3,620		43.30% Pe	rvious Area								
		4,740		56.70% Im	pervious Ar	ea							
	Tc	Length	Slope	e Velocity	Capacity	Description							
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	9.9	50	0.0041	0.08		Sheet Flow,							
						Grass: Short n= 0.150 P2= 3.69"							
	1.7	47	0.0041	0.45		Shallow Concentrated Flow,							
						Short Grass Pasture Kv= 7.0 fps							
	0.6	76	0.0100	2.03		Shallow Concentrated Flow,							
						Paved Kv= 20.3 fps							
		4 - 0											

12.2 173 Total

Summary for Reach 1R: Flow through 2S

Inflow	=	0.00 cfs @	0.00 hrs,	Volume=	0.000 af		
Outflow	=	0.00 cfs @	0.00 hrs,	Volume=	0.000 af,	Atten= 0%,	Lag= 0.0 min
Routed	to Reac	h AP2 : Analys	sis Point 2				•

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.00' Flow Area= 74.7 sf, Capacity= 430.82 cfs

112.00' x 1.00' deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 236.0' Slope= 0.0233 '/' Inlet Invert= 35.50', Outlet Invert= 30.00'

‡

Summary for Reach 2Ra: Channel through 1S

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area = 7.198 ac, 51.36% Impervious, Inflow Depth = 5.53" for 25-Year Storm event Inflow = 8.17 cfs @ 12.25 hrs, Volume= 3.319 af Outflow = 8.17 cfs @ 12.25 hrs, Volume= 3.319 af, Atten= 0%, Lag= 0.5 min Routed to Reach 2Rb : Channel through 1S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.46 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.93 fps, Avg. Travel Time= 1.2 min

Peak Storage= 321 cf @ 12.25 hrs Average Depth at Peak Storage= 0.61', Surface Width= 5.68' Bank-Full Depth= 6.00' Flow Area= 120.0 sf, Capacity= 1,586.21 cfs

2.00' x 6.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= $4.0 \ 2.0 \ '/'$ Top Width= 38.00'Length= 136.0' Slope= $0.0294 \ '/'$ Inlet Invert= 24.00', Outlet Invert= 20.00'

Summary for Reach 2Rb: Channel through 1S

[61] Hint: Exceeded Reach 2Ra outlet invert by 0.18' @ 12.25 hrs

Inflow Area = 7.303 ac, 52.06% Impervious, Inflow Depth = 5.55" for 25-Year Storm event Inflow = 8.54 cfs @ 12.22 hrs, Volume= 3.380 af Outflow = 8.53 cfs @ 12.24 hrs, Volume= 3.380 af, Atten= 0%, Lag= 1.1 min Routed to Reach 2Rc : Channel through 1S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.30 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.30 fps, Avg. Travel Time= 2.0 min

Peak Storage= 567 cf @ 12.24 hrs Average Depth at Peak Storage= 0.18', Surface Width= 21.08' Bank-Full Depth= 6.00' Flow Area= 228.0 sf, Capacity= 4,170.50 cfs

20.00' x 6.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 4.0 2.0 '/' Top Width= 56.00' Length= 153.0' Slope= 0.0392 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	7.198 ac, 5	1.36% Impe	ervious,	Inflow De	pth =	5.53"	for 25-Ye	ear Storm event
Inflow	=	8.17 cfs @	12.25 hrs,	Volume	=	3.319 a	af		
Outflow	=	8.17 cfs @	12.25 hrs,	Volume	=	3.319	af, Atte	en= 0%, La	ag= 0.0 min
Routed	to Read	h 2Ra : Char	nnel through	1S					-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.247 ac,10	0.00% Imp	ervious,	Inflow Dept	h= 6.9	94" for 25-	Year Storr	n event
Inflow	=	1.70 cfs @	12.09 hrs,	Volume	= 0.	143 af			
Outflow	=	1.70 cfs @	12.09 hrs,	Volume	= 0.	143 af,	Atten= 0%,	Lag= 0.0	min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP5: Analysis Point 5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.106 ac,10	0.00% Imper	vious,	Inflow Depth =	6.94	4" for	25-Year	Storm event
Inflow	=	0.73 cfs @	12.09 hrs, V	olume:	= 0.06	l af			
Outflow	=	0.73 cfs @	12.09 hrs, V	olume [:]	= 0.06	1 af, <i>1</i>	Atten= C)%, Lag=	= 0.0 min
Routed to Reach 2Rb : Channel through 1S									

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP6: Analysis Point 6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.192 ac, 56.70% Imperviou	s, Inflow Depth = 5.77	7" for 25-Year Storm event
Inflow	=	1.01 cfs @ 12.16 hrs, Volur	ne= 0.092 af	
Outflow	=	1.01 cfs @ 12.16 hrs, Volur	ne= 0.092 af, /	Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Pond AP3: Existing Pond

15" CMP culvert inlet is buried. Contractor to uncover culvert inlet.

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=47)

EX CONDI d by Jones D® 10.20-3c	TION & Beach <u>s/n 00762</u>	Enginee © 2023 F	ers Inc lydroCAD Software S	Type III 24-hr Solutions LLC	25-Year Storm Rain Printed	<i>fall=7.18"</i> 11/4/2024 <u>Page 25</u>
rea = 6 = 25. = 7. = 7. ed to Reach A ary = 0. ed to Reach 1 by Dyn-Stor- ev = 33.99' @	.804 ac, 5 75 cfs @ 39 cfs @ 39 cfs @ 4P2 : Anal 00 cfs @ 1R : Flow t 1nd metho 12.95 hrs	51.37% li 12.35 h 12.95 h 12.95 h lysis Poir 0.00 h through 2 d, Time S Surf.Ar	mpervious, Inflow E rs, Volume= rs, Volume= rs, Volume= nt 2 rs, Volume= 2S Span= 0.00-48.00 h rea= 19,640 sf Sto	Depth = 5.54" 3.141 af 3.141 af, Atte 3.141 af 0.000 af 0.000 af nrs, dt= 0.05 hrs rage= 36,586 cf	for 25-Year Storm ev n= 71%, Lag= 36.1 m / 3	vent
w detention t of-Mass det. t Invert	ime= (not ime= 32.0 Avail.S	calculate min (84 Storage	ed: outflow precedes 2.2 - 810.2) Storage Descriptio	s inflow) n		
26.00'	104	,430 cf	Custom Stage Da	i ta (Irregular) Lis	ted below (Recalc)	
n Sui t)	rf.Area (sɑ-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
00 00 00 00 00 50 20 00 2	1 37 2,236 7,294 19,719 43,192 43,192	1.0 24.0 218.0 444.0 933.0 1,107.0 1,107.0	0 29 1,707 9,046 26,004 46,047 21,596	0 29 1,736 10,782 36,786 82,834 104,430	1 53 3,797 15,721 69,323 97,611 98,164	
Routing	Inve	ert Outle	et Devices			
Primary Secondary	imary 26.00' 1 L: In econdary 35.50' 2 H C		Round Culvert 56.0' CMP, project / Outlet Invert= 26.0 .025 Corrugated m long + 3.0 '/ Side d (feet) 0.20 0.40 f. (English) 2.68 2.	ting, no headwal 00' / 24.09' S= etal, Flow Area 2 x 24.0' breac 0.60 0.80 1.00 70 2.70 2.64 2	I, Ke= 0.900 0.0122 '/' Cc= 0.900 = 1.23 sf Jth Broad-Crested R 1.20 1.40 1.60 .63 2.64 2.64 2.63	ectangular We
	EX CONDI d by Jones $D^{\textcircled{B}} 10.20-3c$ rea = 6 = 25. = 7. = 7. ed to Reach / and to Reach / by Dyn-Stor- ev = 33.99' @ w detention t f-Mass det. t Invert 26.00' n Sun t) 0 0 0 0 0 0 0 0 0 0 0 0 0	EX CONDITION d by Jones & Beach D® 10.20-3c s/n 00762 rea = 6.804 ac, 8 = 25.75 cfs @ = 7.39 cfs @ = 7.39 cfs @ = 7.39 cfs @ ed to Reach AP2 : Ana ary = 0.00 cfs @ ed to Reach AP2 : Ana ary = 0.00 cfs @ ed to Reach 1R : Flow by Dyn-Stor-Ind method ever 33.99' @ 12.95 hrs w detention time= (not f-Mass det. time= 32.0 Invert Avail.5 26.00' 104 n Surf.Area t) (sq-ft) 0 1 0 37 0 2,236 0 7,294 0 19,719 0 43,192 0 43,192 0 43,192 Routing Inver Primary 26.0	EX CONDITION d by Jones & Beach Engines $D@ 10.20-3c s/n 00762 © 2023 H$ rea = $6.804 ac, 51.37\% H$ = $25.75 cfs @ 12.35 h$ = $7.39 cfs @ 12.95 h$ = $7.39 cfs @ 12.95 h$ ed to Reach AP2 : Analysis Pointry = $0.00 cfs @ 0.00 h$ ed to Reach AP2 : Analysis Pointry = $0.00 cfs @ 0.00 h$ ed to Reach 1R : Flow through 2 by Dyn-Stor-Ind method, Time 3 ev= 33.99' @ 12.95 hrs ev= 33.99' @ 12.95 hrs sev= 33.99' @ 12.95 hrs suff.Area Perim.t (sq-ft) (feet) 0 1 100 37 24.0 7.294 0 $2,236$ 0 $2,236$ 110.0 7.294 0 $43,192$ 0 $43,192$ 1 107.0 0 $43,192$ 1 107.0 0 $43,192$ 1 107.0 0 $43,192$ 1 107.0	EX CONDITIONd by Jones & Beach Engineers Inc $D@ 10.20-3c s/n 00762 © 2023 HydroCAD Software Stea =6.804 ac, 51.37% Impervious, Inflow I=25.75 cfs @12.35 hrs, Volume==7.39 cfs @12.95 hrs, Volume==7.39 cfs @12.95 hrs, Volume=ed to Reach AP2 : Analysis Point 2try =0.00 cfs @0.00 cfs @0.00 hrs, Volume=ed to Reach 1R : Flow through 2Sby Dyn-Stor-Ind method, Time Span= 0.00-48.00 fever 33.99' @ 12.95 hrsSurf.Area=19,640 sff-Mass det. time=32.0 min (842.2 - 810.2)InvertAvail.StorageStorage Description26.00'104,430 cfCustom Stage DatenSurf.AreaPerim.Inc.Storet)(sq-ft)(feet)(cubic-feet)0103724.02902,236218.01,70707,294043,1921,107.021,596RoutingInvertOutlet DevicesPrimary26.00'15.0" Round CulvertL= 156.0' CMP, projectInlet / Outlet Invert= 26.n=0.25 Corrugated mSecondary35.50'24.0' long + 3.0'/' SideHead (feet)0.25 Corrugated m$	EX CONDITION Type Ill 24-hr d by Jones & Beach Engineers Inc De 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC rea = 6.804 ac, 51.37% Impervious, Inflow Depth = 5.54" = 25.75 cfs @ 12.35 hrs, Volume= 3.141 af = 7.39 cfs @ 12.95 hrs, Volume= 3.141 af = 7.39 cfs @ 0.00 hrs, Volume= 0.000 af ed to Reach AP2 : Analysis Point 2	EX CONDITION Type III 24-hr 25-Year Storm Rain d by Jones & Beach Engineers Inc Printed De 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Printed ea = 6.804 ac, 51.37% Impervious, Inflow Depth = $5.54"$ for 25-Year Storm ex = 25.75 cfs @ 12.35 hrs, Volume= 3.141 af = 7.39 cfs @ 12.95 hrs, Volume= 3.141 af = 7.39 cfs @ 12.95 hrs, Volume= 3.141 af et to Reach AP2 : Analysis Point 2 3.141 af 416 of Reach AP2 : Analysis Point 2 ry = 0.00 cfs @ 0.00 hrs, Volume= 0.00 af ed to Reach 1R : Flow through 2S 800 pyn-Stor-Ind method, Time Span= $0.00-48.00$ hrs, dt= 0.05 hrs / 3 ev= $33.99'$ @ 12.95 hrs Surf.Area= $19,640$ sf Storage= $36,586$ cf w detention time= (not calculated: outflow precedes inflow) f-Mass det. time= 32.0 min ($842.2 - 810.2$) Invert Avail.Storage Storage Description $26.00'$ $104,430$ cf Cuber feet) (cubic-feet) $(sq-ft)$ (feet) $(sq-ft)$ (feet)

Primary OutFlow Max=7.39 cfs @ 12.95 hrs HW=33.99' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 7.39 cfs @ 6.02 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=26.00' TW=35.50' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

24029 EX CONDITION	Type III 24-hr 50-Year Storm Rainfall=8.6	51"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/202	24
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software	e Solutions LLC Page 2	26

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=358,038 sf 25.16% Impervious Runoff Depth=5.96" Flow Length=919' Tc=21.9 min CN=78 Runoff=36.81 cfs 4.081 af
Subcatchment2S: Subcatchment2S	Runoff Area=17,152 sf 51.10% Impervious Runoff Depth=6.80" Flow Length=142' Tc=13.6 min CN=85 Runoff=2.36 cfs 0.223 af
Subcatchment3S: Subcatchment3S	Runoff Area=296,381 sf 51.37% Impervious Runoff Depth=6.92" Flow Length=604' Tc=26.3 min CN=86 Runoff=31.85 cfs 3.926 af
Subcatchment4S: Subcatchment4S	Runoff Area=10,753 sf 100.00% Impervious Runoff Depth=8.37" Tc=6.0 min CN=98 Runoff=2.04 cfs 0.172 af
Subcatchment5S: Subcatchment5S	Runoff Area=4,596 sf 100.00% Impervious Runoff Depth=8.37" Tc=6.0 min CN=98 Runoff=0.87 cfs 0.074 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,360 sf 56.70% Impervious Runoff Depth=7.17" Flow Length=173' Tc=12.2 min CN=88 Runoff=1.24 cfs 0.115 af
Reach 1R: Flow through 2S n=0.030	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=236.0' S=0.0233 '/' Capacity=430.82 cfs Outflow=0.00 cfs 0.000 af
Reach 2Ra: Channel through 1S n=0.040 L	Avg. Flow Depth=0.64' Max Vel=3.54 fps Inflow=8.89 cfs 4.149 af =136.0' S=0.0294 '/' Capacity=1,586.21 cfs Outflow=8.87 cfs 4.149 af
Reach 2Rb: Channel through 1S n=0.040 L	Avg. Flow Depth=0.19' Max Vel=2.39 fps Inflow=9.35 cfs 4.223 af =153.0' S=0.0392 '/' Capacity=4,170.50 cfs Outflow=9.34 cfs 4.223 af
Reach 2Rc: Channel through 1S n=0.040 L	Avg. Flow Depth=0.25' Max Vel=1.83 fps Inflow=9.34 cfs 4.223 af .=303.0' S=0.0165 '/' Capacity=2,705.34 cfs Outflow=9.31 cfs 4.223 af
Reach AP1: Analysis Point 1	Inflow=46.04 cfs 8.303 af Outflow=46.04 cfs 8.303 af
Reach AP2: Analysis Point 2	Inflow=8.89 cfs 4.149 af Outflow=8.89 cfs 4.149 af
Reach AP4: Analysis Point 4	Inflow=2.04 cfs 0.172 af Outflow=2.04 cfs 0.172 af
Reach AP5: Analysis Point 5	Inflow=0.87 cfs 0.074 af Outflow=0.87 cfs 0.074 af
Reach AP6: Analysis Point 6	Inflow=1.24 cfs 0.115 af Outflow=1.24 cfs 0.115 af
Pond AP3: Existing Pond Primary=7.6	Peak Elev=34.60' Storage=51,115 cf Inflow=31.85 cfs 3.926 af 5 cfs 3.926 af Secondary=0.00 cfs 0.000 af Outflow=7.65 cfs 3.926 af

Total Runoff Area = 15.961 ac Runoff Volume = 8.590 af Average Runoff Depth = 6.46" 61.00% Pervious = 9.736 ac 39.00% Impervious = 6.225 ac
APPENDIX II

PROPOSED CONDITIONS DRAINAGE ANALYSIS

Summary 2 YEAR Complete 10 YEAR Complete 25 YEAR Summary 50 YEAR

Area Listing (all nodes)

A	rea	CN	Description
(acr	res)		(subcatchment-numbers)
1.7	728	83	1/4 acre lots, 38% imp, HSG C (1S, 3S, 7S, 18S)
1.4	483	74	>75% Grass cover, Good, HSG C (1S, 2S, 3S, 5S, 6S, 7S, 8S, 9S, 11S, 12S, 13S,
			15S, 16S, 18S, 19S)
0.7	737	98	Paved parking, HSG C (4S, 12S, 13S, 15S, 16S)
0.0	022	98	Paved roads w/curbs & sewers, HSG B (1S)
5.0	007	98	Paved roads w/curbs & sewers, HSG C (1S, 2S, 3S, 6S, 7S, 8S, 9S, 19S)
1.	536	98	Roofs, HSG C (1S, 2S, 3S, 6S, 8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S, 17S,
			19S)
0.0	007	98	Water Surface, 0% imp, HSG C (10S, 17S)
0.1	119	98	Water Surface, 0% imp, HSG D (3S)
0.0	076	55	Woods, Good, HSG B (1S)
4.2	229	70	Woods, Good, HSG C (1S, 2S, 3S, 7S, 11S)
1.0	018	77	Woods, Good, HSG D (1S, 3S)
15.	961	85	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.098	HSG B	1S
14.727	HSG C	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S, 17S, 18S, 19S
1.137	HSG D	1S, 3S
0.000	Other	
15.961		TOTAL AREA

24029 PR CONDITIONType III 24-hr2-Year Storm Rainfall=3.70"Prepared by Jones & Beach Engineers IncPrinted11/4/2024HydroCAD® 10.20-3cs/n 00762© 2023 HydroCAD Software Solutions LLCPage 4

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=210,582 sf 31.09% Impervious Runoff Depth=1.80" Flow Length=588' Tc=13.2 min CN=80 Runoff=7.97 cfs 0.724 af
Subcatchment2S: Subcatchment2S	Runoff Area=16,051 sf 68.26% Impervious Runoff Depth=2.64" Flow Length=125' Tc=10.9 min CN=90 Runoff=0.94 cfs 0.081 af
Subcatchment3S: Subcatchment3S	Runoff Area=282,964 sf 53.81% Impervious Runoff Depth=2.28" Flow Length=604' Tc=26.3 min CN=86 Runoff=10.38 cfs 1.232 af
Subcatchment4S: Subcatchment4S	Runoff Area=2,236 sf 100.00% Impervious Runoff Depth=3.47" Tc=6.0 min CN=98 Runoff=0.18 cfs 0.015 af
Subcatchment5S: Subcatchment5S	Runoff Area=310 sf 0.00% Impervious Runoff Depth=1.38" Tc=6.0 min CN=74 Runoff=0.01 cfs 0.001 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,122 sf 55.43% Impervious Runoff Depth=2.36" Flow Length=149' Tc=12.0 min CN=87 Runoff=0.42 cfs 0.037 af
Subcatchment7S: Subcatchment7S	Runoff Area=24,490 sf 13.93% Impervious Runoff Depth=1.45" Flow Length=212' Tc=15.9 min CN=75 Runoff=0.68 cfs 0.068 af
Subcatchment8S: Subcatchment8S	Runoff Area=38,380 sf 84.08% Impervious Runoff Depth=3.03" Tc=6.0 min CN=94 Runoff=2.90 cfs 0.223 af
Subcatchment9S: Subcatchment9S	Runoff Area=6,117 sf 89.23% Impervious Runoff Depth=3.14" Tc=6.0 min CN=95 Runoff=0.47 cfs 0.037 af
Subcatchment10S: Subcatchment10S	Runoff Area=1,015 sf 81.48% Impervious Runoff Depth=3.47" Tc=6.0 min CN=98 Runoff=0.08 cfs 0.007 af
Subcatchment11S: Subcatchment11S	Runoff Area=13,311 sf 42.66% Impervious Runoff Depth=2.11" Tc=6.0 min CN=84 Runoff=0.74 cfs 0.054 af
Subcatchment12S: Subcatchment12S	Runoff Area=7,530 sf 64.63% Impervious Runoff Depth=2.64" Tc=6.0 min CN=90 Runoff=0.51 cfs 0.038 af
Subcatchment13S: Subcatchment13S	Runoff Area=20,822 sf 79.61% Impervious Runoff Depth=2.93" Tc=6.0 min CN=93 Runoff=1.54 cfs 0.117 af
Subcatchment14S: Subcatchment14S	Runoff Area=3,343 sf 100.00% Impervious Runoff Depth=3.47" Tc=6.0 min CN=98 Runoff=0.27 cfs 0.022 af
Subcatchment15S: Subcatchment15S	Runoff Area=16,422 sf 79.03% Impervious Runoff Depth=2.93" Tc=6.0 min CN=93 Runoff=1.21 cfs 0.092 af
Subcatchment16S: Subcatchment16S	Runoff Area=10,113 sf 92.02% Impervious Runoff Depth=3.24" Tc=6.0 min CN=96 Runoff=0.80 cfs 0.063 af

24029 PR CONDITION	Type III 24-hr 2-Year Storm Rainfall=3.70"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroC	AD Software Solutions LLC Page 5
Subcatchment17S: Subcatchment17S	Runoff Area=892 sf 88.79% Impervious Runoff Depth=3.47" Tc=6.0 min CN=98 Runoff=0.07 cfs 0.006 af
Subcatchment18S: Subcatchment18S	Runoff Area=23,376 sf 30.41% Impervious Runoff Depth=1.87" Tc=10.0 min CN=81 Runoff=1.02 cfs 0.084 af
Subcatchment19S: Subcatchment19S	Runoff Area=9,205 sf 93.91% Impervious Runoff Depth=3.35" Tc=6.0 min CN=97 Runoff=0.73 cfs 0.059 af
Reach 2Ra: Channel through 1S Avg n=0.040 L=136.0'	. Flow Depth=0.55' Max Vel=3.25 fps Inflow=6.49 cfs 1.615 af S=0.0294 '/' Capacity=1,586.21 cfs Outflow=6.49 cfs 1.615 af
Reach 2Rb: Channel through 1S Avg n=0.040 L=153.0'	. Flow Depth=0.15' Max Vel=2.10 fps Inflow=6.50 cfs 1.867 af S=0.0392 '/' Capacity=4,170.50 cfs Outflow=6.50 cfs 1.867 af
Reach 2Rc: Channel through 1S Avg n=0.040 L=303.0'	. Flow Depth=0.22' Max Vel=1.72 fps Inflow=7.94 cfs 2.135 af S=0.0165 '/' Capacity=2,705.34 cfs Outflow=7.92 cfs 2.133 af
Reach 3R: 15" HDPE CulvertAvg15.0" Round Pipen=0.012L=47	. Flow Depth=0.31' Max Vel=2.89 fps Inflow=0.68 cfs 0.068 af 7.0' S=0.0053 '/' Capacity=5.10 cfs Outflow=0.68 cfs 0.068 af
Reach 4R: Flow through 1S Avg n=0.030 L=200.	. Flow Depth=0.24' Max Vel=1.65 fps Inflow=0.68 cfs 0.068 af 0' S=0.0125 '/' Capacity=14.80 cfs Outflow=0.67 cfs 0.068 af
Reach 5R: Channel through 1S Avg n=0.040 L=77.0	. Flow Depth=0.02' Max Vel=0.82 fps Inflow=0.18 cfs 0.251 af ' S=0.0779 '/' Capacity=498.13 cfs Outflow=0.18 cfs 0.251 af
Reach 6R: SEE NOTES	Inflow=0.23 cfs 0.022 af Outflow=0.23 cfs 0.022 af
Reach 7R: 15" HDPE Culvert Avg. 15.0" Round Pipe n=0.012 L=20.	Flow Depth=0.22' Max Vel=10.34 fps Inflow=1.53 cfs 0.151 af 0' S=0.1000 '/' Capacity=22.13 cfs Outflow=1.53 cfs 0.151 af
Reach AP1: Analysis Point 1	Inflow=15.64 cfs 2.857 af Outflow=15.64 cfs 2.857 af
Reach AP2: Analysis Point 2	Inflow=6.39 cfs 1.410 af Outflow=6.39 cfs 1.410 af
Reach AP4: Analysis Point 4	Inflow=0.18 cfs_0.015 af
	Outflow=0.18 cfs 0.015 af
Reach AP5: Analysis Point 5	Inflow=0.01 cfs 0.001 af Outflow=0.01 cfs 0.001 af
Reach AP6: Analysis Point 6	Inflow=0.42 cfs 0.037 af Outflow=0.42 cfs 0.037 af
Pond 1P: Bioretention Pond #1	Peak Elev=33.02' Storage=2,733 cf Inflow=2.90 cfs 0.223 af Outflow=0.64 cfs 0.210 af

24029 PR CONDITION	Type III 24-hr 2-Year Storm Rainfall=3.70"
Prepared by Jones & Beach Engineers In	c Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroC	CAD Software Solutions LLC Page 6
Pond 2P: Infiltration System A Discarded=0.16 cfs	Peak Elev=32.16' Storage=3,746 cf Inflow=0.87 cfs 0.824 af 0.486 af Primary=0.18 cfs 0.251 af Outflow=0.34 cfs 0.738 af
Pond 2PF: Bioretention Pond #1 Forebay	Peak Elev=0.00' Storage=0 cf
Pond 3P: Focal Point #1	Peak Elev=29.57' Storage=40 cf Inflow=0.47 cfs 0.037 af Outflow=0.49 cfs 0.037 af
Pond 4P: Infiltration System B Discarded=0.04 cfs	Peak Elev=24.83' Storage=949 cf Inflow=0.57 cfs 0.043 af 0.043 af Primary=0.00 cfs 0.000 af Outflow=0.04 cfs 0.043 af
Pond 5P: Lined Stone Drip Edge Primary=0.08 cfs 0.	Peak Elev=29.06' Storage=0.000 af Inflow=0.08 cfs 0.007 af 007 af Secondary=0.00 cfs 0.000 af Outflow=0.08 cfs 0.007 af
Pond 6P: Detention Pond	Peak Elev=35.94' Storage=993 cf Inflow=0.74 cfs 0.054 af Outflow=0.13 cfs 0.053 af
Pond 7P: Bioretention Pond #2	Peak Elev=32.82' Storage=202 cf Inflow=0.59 cfs 0.044 af Outflow=0.40 cfs 0.044 af
Pond 8P: Bioretention Pond #3	Peak Elev=31.01' Storage=551 cf Inflow=1.54 cfs 0.117 af Outflow=0.80 cfs 0.117 af
Pond 10P: Focal Point #2	Peak Elev=38.14' Storage=59 cf Inflow=1.21 cfs 0.092 af Outflow=1.22 cfs 0.092 af
Pond 11P: Chamber System C	Peak Elev=33.43' Storage=6,134 cf Inflow=2.75 cfs 0.214 af Outflow=0.11 cfs 0.205 af
Pond 12P: Jellyfish#1 15.0" Round 0	Peak Elev=34.04' Inflow=0.80 cfs 0.063 af Culvert n=0.012 L=20.0' S=0.0075 '/' Outflow=0.80 cfs 0.063 af
Pond 13P: Lined Stone Drip Edge Primary=0.07 cfs 0.	Peak Elev=35.06' Storage=0.000 af Inflow=0.07 cfs 0.006 af 006 af Secondary=0.00 cfs 0.000 af Outflow=0.07 cfs 0.006 af
Pond 14P: Chamber System D	Peak Elev=27.25' Storage=1,496 cf Inflow=0.80 cfs 0.117 af Outflow=0.44 cfs 0.116 af
Pond 15P: Jellyfish#2 15.0" Round (Peak Elev=33.72' Inflow=0.73 cfs 0.059 af Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=0.73 cfs 0.059 af
Pond 16P: Eco Paver Primary=0.23 cfs 0.	Peak Elev=28.75' Storage=81 cf Inflow=0.27 cfs 0.022 af 022 af Secondary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.022 af
Pond AP3: Existing Pond 15.0" Round Co	Peak Elev=31.38' Storage=6,856 cf Inflow=10.82 cfs 1.329 af ulvert n=0.025 L=156.0' S=0.0122 '/' Outflow=6.18 cfs 1.329 af
Pond DMH1: Drain Manhole 1 18.0" Round 0	Peak Elev=32.16' Inflow=0.64 cfs 0.784 af Culvert n=0.012 L=52.0' S=0.0067 '/' Outflow=0.64 cfs 0.784 af

24029 PR CONDITION	Type III 24-hr 2-Year Storm Rainfall=3.70"
Prepared by Jones & Beach Engineer	s Inc Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 Hy	/droCAD Software Solutions LLC Page 7
Pond DMH2: Drain Manhole 2	Peak Elev=34.96' Inflow=1.22 cfs 0.092 af
Pond DMH4: Drain Manhole 4	Peak Elev=33.46' Inflow=0.73 cfs 0.059 af
15.0" Rou	und Culvert n=0.012 L=23.0' S=0.0087 '/' Outflow=0.73 cfs 0.059 af

Total Runoff Area = 15.961 ac Runoff Volume = 2.957 af Average Runoff Depth = 2.22" 50.14% Pervious = 8.003 ac 49.86% Impervious = 7.959 ac

24029 PR CONDITION	Type III 24-hr 10-Year Storm Rainfall=5.65"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software S	Solutions LLC Page 8

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=210,582 sf 31.09% Impervious Runoff Depth=3.47" Flow Length=588' Tc=13.2 min CN=80 Runoff=15.43 cfs 1.397 af
Subcatchment2S: Subcatchment2S	Runoff Area=16,051 sf 68.26% Impervious Runoff Depth=4.51" Flow Length=125' Tc=10.9 min CN=90 Runoff=1.57 cfs 0.138 af
Subcatchment3S: Subcatchment3S	Runoff Area=282,964 sf 53.81% Impervious Runoff Depth=4.08" Flow Length=604' Tc=26.3 min CN=86 Runoff=18.33 cfs 2.207 af
Subcatchment4S: Subcatchment4S	Runoff Area=2,236 sf 100.00% Impervious Runoff Depth=5.41" Tc=6.0 min CN=98 Runoff=0.28 cfs 0.023 af
Subcatchment5S: Subcatchment5S	Runoff Area=310 sf 0.00% Impervious Runoff Depth=2.89" Tc=6.0 min CN=74 Runoff=0.02 cfs 0.002 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,122 sf 55.43% Impervious Runoff Depth=4.18" Flow Length=149' Tc=12.0 min CN=87 Runoff=0.73 cfs 0.065 af
Subcatchment7S: Subcatchment7S	Runoff Area=24,490 sf 13.93% Impervious Runoff Depth=2.99" Flow Length=212' Tc=15.9 min CN=75 Runoff=1.45 cfs 0.140 af
Subcatchment8S: Subcatchment8S	Runoff Area=38,380 sf 84.08% Impervious Runoff Depth=4.95" Tc=6.0 min CN=94 Runoff=4.61 cfs 0.363 af
Subcatchment9S: Subcatchment9S	Runoff Area=6,117 sf 89.23% Impervious Runoff Depth=5.06" Tc=6.0 min CN=95 Runoff=0.74 cfs 0.059 af
Subcatchment10S: Subcatchment10S	Runoff Area=1,015 sf 81.48% Impervious Runoff Depth=5.41" Tc=6.0 min CN=98 Runoff=0.13 cfs 0.011 af
Subcatchment11S: Subcatchment11S	Runoff Area=13,311 sf 42.66% Impervious Runoff Depth=3.87" Tc=6.0 min CN=84 Runoff=1.34 cfs 0.099 af
Subcatchment12S: Subcatchment12S	Runoff Area=7,530 sf 64.63% Impervious Runoff Depth=4.51" Tc=6.0 min CN=90 Runoff=0.85 cfs 0.065 af
Subcatchment13S: Subcatchment13S	Runoff Area=20,822 sf 79.61% Impervious Runoff Depth=4.84" Tc=6.0 min CN=93 Runoff=2.47 cfs 0.193 af
Subcatchment14S: Subcatchment14S	Runoff Area=3,343 sf 100.00% Impervious Runoff Depth=5.41" Tc=6.0 min CN=98 Runoff=0.41 cfs 0.035 af
Subcatchment15S: Subcatchment15S	Runoff Area=16,422 sf 79.03% Impervious Runoff Depth=4.84" Tc=6.0 min CN=93 Runoff=1.95 cfs 0.152 af
Subcatchment16S: Subcatchment16S	Runoff Area=10,113 sf 92.02% Impervious Runoff Depth=5.18" Tc=6.0 min CN=96 Runoff=1.24 cfs 0.100 af

24029 PR CONDITION Prepared by Jones & Beach Engineers	Type III 24-hr 10-Year Storm Rainfall=5.65" Inc Printed 11/4/2024
HydroCAD® 10.20-30 S/II 00702 © 2023 Hydr	Page 9
Subcatchment17S: Subcatchment17S	Runoff Area=892 sf 88.79% Impervious Runoff Depth=5.41" Tc=6.0 min CN=98 Runoff=0.11 cfs 0.009 af
Subcatchment18S: Subcatchment18S	Runoff Area=23,376 sf 30.41% Impervious Runoff Depth=3.57" Tc=10.0 min CN=81 Runoff=1.93 cfs 0.159 af
Subcatchment19S: Subcatchment19S	Runoff Area=9,205 sf 93.91% Impervious Runoff Depth=5.30" Tc=6.0 min CN=97 Runoff=1.14 cfs 0.093 af
Reach 2Ra: Channel through 1S n=0.040 L=136.	Avg. Flow Depth=0.59' Max Vel=3.38 fps Inflow=7.47 cfs 2.838 af .0' S=0.0294 '/' Capacity=1,586.21 cfs Outflow=7.47 cfs 2.838 af
Reach 2Rb: Channel through 1S n=0.040 L=153.	Avg. Flow Depth=0.18' Max Vel=2.27 fps Inflow=8.18 cfs 3.166 af .0' S=0.0392 '/' Capacity=4,170.50 cfs Outflow=8.18 cfs 3.165 af
Reach 2Rc: Channel through 1S A n=0.040 L=303.0	vg. Flow Depth=0.27' Max Vel=1.94 fps Inflow=10.89 cfs 3.657 af ' S=0.0165 '/' Capacity=2,705.34 cfs Outflow=10.81 cfs 3.656 af
Reach 3R: 15" HDPE Culvert 15.0" Round Pipe n=0.012 L	Avg. Flow Depth=0.46' Max Vel=3.57 fps Inflow=1.45 cfs 0.140 af =47.0' S=0.0053 '/' Capacity=5.10 cfs Outflow=1.45 cfs 0.140 af
Reach 4R: Flow through 1S n=0.030 L=2	Avg. Flow Depth=0.35' Max Vel=2.03 fps Inflow=1.45 cfs 0.140 af 200.0' S=0.0125 '/' Capacity=14.80 cfs Outflow=1.44 cfs 0.140 af
Reach 5R: Channel through 1S n=0.040 L=7	Avg. Flow Depth=0.05' Max Vel=1.44 fps Inflow=0.76 cfs 0.326 af '7.0' S=0.0779 '/' Capacity=498.13 cfs Outflow=0.76 cfs 0.326 af
Reach 6R: SEE NOTES	Inflow=0.36 cfs 0.035 af Outflow=0.36 cfs 0.035 af
Reach 7R: 15" HDPE Culvert A 15.0" Round Pipe n=0.012 L=	vg. Flow Depth=0.32' Max Vel=12.69 fps Inflow=3.12 cfs 0.299 af 20.0' S=0.1000 '/' Capacity=22.13 cfs Outflow=3.12 cfs 0.299 af
Reach AP1: Analysis Point 1	Inflow=26.11 cfs 5.052 af Outflow=26.11 cfs 5.052 af
Reach AP2: Analysis Point 2	Inflow=7.34 cfs 2.518 af Outflow=7.34 cfs 2.518 af
Reach AP4: Analysis Point 4	Inflow=0.28 cfs 0.023 af Outflow=0.28 cfs 0.023 af
Reach AP5: Analysis Point 5	Inflow=0.02 cfs 0.002 af Outflow=0.02 cfs 0.002 af
Reach AP6: Analysis Point 6	Inflow=0.73 cfs 0.065 af Outflow=0.73 cfs 0.065 af
Pond 1P: Bioretention Pond #1	Peak Elev=34.17' Storage=5,443 cf Inflow=4.61 cfs 0.363 af Outflow=0.94 cfs 0.351 af

24029 PR CONDITION	Type III 24-hr 10-Year Storm Rainfall=5.65"
Prepared by Jones & Beach Engineers	nc Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 Hyd	oCAD Software Solutions LLC Page 10
Pond 2P: Infiltration System A Discarded=0.17 of	Peak Elev=32.36' Storage=3,920 cf Inflow=1.05 cfs 0.916 af fs 0.505 af Primary=0.76 cfs 0.326 af Outflow=0.93 cfs 0.831 af
Pond 2PF: Bioretention Pond #1 Forebay	Peak Elev=0.00' Storage=0 cf
Pond 3P: Focal Point #1	Peak Elev=29.60' Storage=42 cf Inflow=0.74 cfs 0.059 af Outflow=0.75 cfs 0.059 af
Pond 4P: Infiltration System B Discarded=0.05 c	Peak Elev=25.96' Storage=1,625 cf Inflow=0.87 cfs 0.070 af fs 0.070 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.070 af
Pond 5P: Lined Stone Drip Edge Primary=0.13 cfs	Peak Elev=29.08' Storage=0.000 af Inflow=0.13 cfs 0.011 af 0.011 af Secondary=0.00 cfs 0.000 af Outflow=0.13 cfs 0.011 af
Pond 6P: Detention Pond	Peak Elev=36.29' Storage=1,910 cf Inflow=1.34 cfs 0.099 af Outflow=0.19 cfs 0.098 af
Pond 7P: Bioretention Pond #2	Peak Elev=34.59' Storage=360 cf Inflow=0.96 cfs 0.074 af Outflow=0.69 cfs 0.074 af
Pond 8P: Bioretention Pond #3	Peak Elev=32.03' Storage=1,366 cf Inflow=2.47 cfs 0.193 af Outflow=0.90 cfs 0.193 af
Pond 10P: Focal Point #2	Peak Elev=38.22' Storage=67 cf Inflow=1.95 cfs 0.152 af Outflow=1.95 cfs 0.152 af
Pond 11P: Chamber System C	Peak Elev=34.23' Storage=10,303 cf Inflow=4.32 cfs 0.345 af Outflow=0.14 cfs 0.321 af
Pond 12P: Jellyfish#1 15.0" Roun	Peak Elev=34.23' Inflow=1.24 cfs 0.100 af Culvert n=0.012 L=20.0' S=0.0075 '/' Outflow=1.24 cfs 0.100 af
Pond 13P: Lined Stone Drip Edge Primary=0.11 cfs	Peak Elev=35.08' Storage=0.000 af Inflow=0.11 cfs 0.009 af 0.009 af Secondary=0.00 cfs 0.000 af Outflow=0.11 cfs 0.009 af
Pond 14P: Chamber System D	Peak Elev=27.91' Storage=2,292 cf Inflow=0.90 cfs 0.193 af Outflow=0.55 cfs 0.193 af
Pond 15P: Jellyfish#2 15.0" Roun	Peak Elev=34.23' Inflow=1.14 cfs 0.093 af Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=1.14 cfs 0.093 af
Pond 16P: Eco Paver Primary=0.36 cfs	Peak Elev=28.87' Storage=109 cf Inflow=0.41 cfs 0.035 af 0.035 af Secondary=0.00 cfs 0.000 af Outflow=0.36 cfs 0.035 af
Pond AP3: Existing Pond 15.0" Round	Peak Elev=33.10' Storage=21,993 cf Inflow=19.01 cfs 2.380 af Culvert n=0.025 L=156.0' S=0.0122 '/' Outflow=7.00 cfs 2.380 af
Pond DMH1: Drain Manhole 1 18.0" Roun	Peak Elev=32.37' Inflow=0.94 cfs 0.881 af Culvert n=0.012 L=52.0' S=0.0067 '/' Outflow=0.94 cfs 0.881 af

24029 PR CONDITION	Type III 24-hr	10-Year Storm Rainfall=5.65"
Prepared by Jones & Beach Engi	neers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 20	23 HydroCAD Software Solutions LLC	Page 11
Pond DMH2: Drain Manhole 2	Peak Elev	=35.13' Inflow=1.95 cfs 0.152 af
18.0'	Round Culvert n=0.012 L=14.0' S=0.0	143 '/' Outflow=1.95 cfs 0.152 af
Pond DMH4: Drain Manhole 4	Peak Elev	=34.23' Inflow=1.14 cfs 0.093 af
15 0'	Round Culvert $n=0.012 = 23.0' = 50.00$	-34.23 millow=1.14 cfs 0.003 af
18.0		

Total Runoff Area = 15.961 acRunoff Volume = 5.310 afAverage Runoff Depth = 3.99"50.14% Pervious = 8.003 ac49.86% Impervious = 7.959 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 15.43 cfs @ 12.18 hrs, Volume= Routed to Reach AP1 : Analysis Point 1 1.397 af, Depth= 3.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

Area (s	f) CN	Description	1			
3,30	1 55	Woods, Go	Woods, Good, HSG B			
96	0 98	Paved road	Paved roads w/curbs & sewers, HSG B			
16,07	7 98	Roofs, HSC	Roofs, HSG C			
46,57	5 98	Paved road	s w/curbs 8 ال	& sewers, HSG C		
16,36	8 74	>75% Gras	s cover, Go	bod, HSG C		
93,75	2 70	Woods, Go	od, HSG C			
4,87	9 83	1/4 acre lot	s, 38% imp	o, HSG C		
28,67	0 77	Woods, Go	od, HSG D			
210,58	2 80	Weighted A	verage			
145,11	6	68.91% Pe	rvious Area	1		
65,46	6	31.09% lm	pervious Ar	ea		
			o "			
IC Leng	th Slop	be Velocity	Capacity	Description		
(min) (fee	et) (11/	π) (π/sec)	(CIS)			
7.2	34 0.029	0.08		Sheet Flow,		
				Woods: Light underbrush n= 0.400 P2= 3.69"		
4.6	16 0.020	0.06		Sheet Flow,		
				Woods: Light underbrush n= 0.400 P2= 3.69"		
0.2	32 0.029	94 5.69	55.51	Irap/vee/Rect Channel Flow, Assumed 1.5 flow depth - Channel		
				Bot. $W=2.00^{\circ}$ D=1.50° Z= 4.0 & 2.0 7° Top. $W=11.00^{\circ}$		
0.0 1		0.0 0.54	240.60	n= 0.040 Winding stream, pools & shoals		
0.5	55 0.038	0.01	312.00	Pot W=20.00' D=1.50' Z= 4.0.8.2.0.1'' Top W=20.00'		
				DO(.VV - 20.00 D - 1.50 Z - 4.0 & 2.0 / TO(0.VV - 29.00)		
0.0 2	12 0.016	SE E E O	202.96	Tron Vec/Poot Channel Flow Accumed 4 5' flow denth Channel		
0.9 5	5 0.010	5 5.52	202.00	$M_{20} = 1.5 \text{ mom}$		
				p = 0.040 Winding stream pools & shoals		
12.2 5						
13.2 3	o i utai					

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 1.57 cfs @ 12.15 hrs, Volume= Routed to Reach AP2 : Analysis Point 2 0.138 af, Depth= 4.51"

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 13

Prepared by Jones & Bead	ch Engineers Inc
HydroCAD® 10.20-3c s/n 0070	62 © 2023 HydroCAD Software Solutions LLC

Α	rea (sf)	CN	Description							
	7,339	98	98 Paved roads w/curbs & sewers. HSG C							
	3,618	98	Roofs, HSG	ЭC						
	2,694	74	>75% Gras	s cover, Go	bod, HSG C					
	2,400	70	Woods, Go	od, HSG C						
	16,051	90	Weighted A	verage						
	5,094	:	31.74% Pe	rvious Area						
	10,957		68.26% Imp	pervious Ar	ea					
Тс	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
8.2	35	0.0225	0.07		Sheet Flow,					
					Woods: Light underbrush n= 0.400 P2= 3.69"					
1.9	15	0.0225	0.13		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.69"					
0.7	47	0.0274	1.16		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
0.1	28	0.2143	3.24		Shallow Concentrated Flow,					
					Short Grass Pasture Kv= 7.0 fps					
10.9	125	Total								

Summary for Subcatchment 3S: Subcatchment 3S

Runoff	=	18.33 cfs @	12.36 hrs,	Volume=	2.207 af,	Depth= 4.08"
Routed	to Por	nd AP3 : Existir	ng Pond			

Area (sf) CN	Description
125,302	2 98	Paved roads w/curbs & sewers, HSG C
9,379	9 98	Roofs, HSG C
7,425	5 74	>75% Grass cover, Good, HSG C
73,762	2 70	Woods, Good, HSG C
46,242	1 83	1/4 acre lots, 38% imp, HSG C
15,690) 77	Woods, Good, HSG D
5,165	5 98	Water Surface, 0% imp, HSG D
282,964	4 86	Weighted Average
130,71 <i>°</i>	1	46.19% Pervious Area
152,253	3	53.81% Impervious Area

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 14

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.5	50	0.0200	0.07		Sheet Flow,
3.5	119	0.0126	0.56		Woods: Light underbrush n= 0.400 P2= 3.69" Shallow Concentrated Flow, Woodland Ky= 5.0 fps
1.5	74	0.0270	0.82		Shallow Concentrated Flow,
2.6	107	0.0187	0.68		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps
5.7	180	0.0111	0.53		Shallow Concentrated Flow,
1.5	74	0.0270	0.82		Woodland Kv= 5.0 fps Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps

26.3 604 Total

Summary for Subcatchment 4S: Subcatchment 4S

Runoff = 0.28 cfs @ 12.09 hrs, Volume= Routed to Reach AP4 : Analysis Point 4 0.023 af, Depth= 5.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

A	rea (sf)	CN	Description						
	2,236	98	Paved parking, HSG C						
	2,236		100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, 6 minute minimum Tc per TR-55				

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 0.02 cfs @ 12.09 hrs, Volume= 0.002 af, Depth= 2.89" Routed to Reach AP5 : Analysis Point 5

Are	a (sf)	CN	Description		
	310	74	>75% Gras	s cover, Go	ood, HSG C
	310		100.00% P	ervious Are	a
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, 6 minute minimum Tc per TR-55

Summary for Subcatchment 6S: Subcatchment 6S

Runoff = 0.73 cfs @ 12.16 hrs, Volume= 0.065 af, Depth= 4.18" Routed to Reach AP6 : Analysis Point 6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

A	rea (sf)	CN	Description						
	4,023	98	98 Paved roads w/curbs & sewers, HSG C						
	479	98	Roofs, HSC	ЭC					
	3,620	74	>75% Gras	s cover, Go	bod, HSG C				
	8,122	87	Weighted A	verage					
	3,620		44.57% Pe	rvious Area					
	4,502		55.43% Imj	pervious Ar	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
9.9	50	0.0041	0.08		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.69"				
1.7	47	0.0041	0.45		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
0.4	52	0.0100	2.03		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
100	140	Total							

12.0 149 Total

Summary for Subcatchment 7S: Subcatchment 7S

Runoff = 1.45 cfs @ 12.22 hrs, Volume= 0.140 af, Depth= 2.99" Routed to Reach 3R : 15" HDPE Culvert

rbs & sewers, HSG C
r, Good, HSG C
GC
imp, HSG C
Area
s Area

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 16

Prepared by Jones	& Beach	Engineers	Inc	
HydroCAD® 10.20-3c	s/n 00762	© 2023 Hyd	roCAD Software	Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.9	50	0.0183	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.69"
0.2	7	0.0183	0.68		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.6	91	0.0134	0.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.2	58	0.0134	0.81		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.0	6	0.2500	3.50		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps

15.9 212 Total

Summary for Subcatchment 8S: Subcatchment 8S

Runoff	=	4.61 cfs @	12.09 hrs,	Volume=
Routed	d to F	Pond 1P : Biorete	ntion Pond	#1

0.363 af, Depth= 4.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

A	rea (sf)	CN	Description					
	23,203	98	Paved road	ls w/curbs &	& sewers, HSG C			
	6,109	74	>75% Gras	s cover, Go	lood, HSG C			
	9,068	98	Roofs, HSC	ЭC				
	38,380	94	Weighted A	Veighted Average				
	6,109		15.92% Pe	15.92% Pervious Area				
	32,271		84.08% Imp	pervious Ar	rea			
_								
Tc	Length	Slop	e Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 9S: Subcatchment 9S

Runoff = 0.74 cfs @ 12.09 hrs, Volume= 0.059 af, Depth= 5.06" Routed to Pond 3P : Focal Point #1

Area (sf)	CN	Description			
4,645	98	Paved roads w/curbs & sewers, HSG C			
659	74	75% Grass cover, Good, HSG C			
813	98	Roofs, HSG C			
6,117	95	Neighted Average			
659		10.77% Pervious Area			
5,458		89.23% Impervious Area			

HydroCA	D® 10.20-	3c s/n 00)762 © 202	23 HydroCA	D Software Solutio	ns LLC Pag	ae 17
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		
		Sum	mary fo	r Subcate	chment 10S: S	Subcatchment 10S	
Runoff Route	= ed to Pone	0.13 cfs d 5P : Lir	s @ 12.0 ned Stone	9 hrs, Volu Drip Edge	me= 0.0	11 af, Depth= 5.41"	
Runoff b Type III 2	y SCS TF 24-hr 10-	R-20 metl Year Sto	hod, UH=S rm Rainfa	SCS, Weigł II=5.65"	nted-CN, Time Sp	oan= 0.00-48.00 hrs, dt= 0.05 hrs	
A	rea (sf)	CN D	escription				
	827	98 R	loofs, HSC	ЭC			
	188	98 V	Vater Surfa	ace, 0% im	o, HSG C		
	1,015	98 V	Veighted A	verage			
	188 827	1 Q	8.52% Pel 1.48% Imr	rvious Area	00		
	021	0	1.40/0 111		ca		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment 11S: Subcatchment 11S

Runoff = 1.34 cfs @ 12.09 hrs, Volume= Routed to Pond 6P : Detention Pond

24029 PR CONDITION

Prepared by Jones & Beach Engineers Inc

0.099 af, Depth= 3.87"

Type III 24-hr 10-Year Storm Rainfall=5.65"

Printed 11/4/2024

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

A	rea (sf)	CN	Description					
	5,679	98	Roofs, HSC	G C				
	7,431	74	>75% Gras	s cover, Go	ood, HSG C			
	201	70	Woods, Go	od, HSG C				
	13,311	84	Weighted A	/eighted Average				
	7,632		57.34% Pe	57.34% Pervious Area				
	5,679		42.66% Im	pervious Ar	ea			
Tc	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 12S: Subcatchment 12S

Runoff = 0.85 cfs @ 12.09 hrs, Volume= Routed to Pond 7P : Bioretention Pond #2 0.065 af, Depth= 4.51"

Type III 24-hr 10-Year Storm Rainfall=5.65"Printed 11/4/2024Solutions LLCPage 18

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	1,411	98	Roofs, HSC) C				
	3,456	98	Paved park	ing, HSG C	,			
	2,663	74	>75% Gras	s cover, Go	ood, HSG C			
	7,530	90	Weighted A	verage				
	2,663		35.37% Pe	35.37% Pervious Area				
	4,867		64.63% Im	pervious Ar	ea			
Tc	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 13S: Subcatchment 13S

Runoff	=	2.47 cfs @	12.09 hrs,	Volume=	0.193 af,	Depth=	4.84"
Routed	to Pond	8P : Bioreter	ntion Pond	#3			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

Area (sf)	CN	Description				
2,582	98	Roofs, HSG C				
13,994	98	Paved parking, HSG C				
4,246	74	>75% Grass cover, Good, HSG C				
20,822	93	Veighted Average				
4,246		20.39% Pervious Area				
16,576		79.61% Impervious Area				
Tc Length	Slor	pe Velocity Capacity Description				
(min) (feet)	(ft/	(ft) (ft/sec) (cfs)				
6.0		Direct Entry,				

Summary for Subcatchment 14S: Subcatchment 14S

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.035 af, Depth= 5.41" Routed to Pond 16P : Eco Paver

A	rea (sf)	CN	Description		
	3,343	98	Roofs, HSC	G C	
	3,343		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 15S: Subcatchment 15S

Runoff = 1.95 cfs @ 12.09 hrs, Volume= 0.152 af, Depth= 4.84" Routed to Pond 10P : Focal Point #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

Ar	ea (sf)	CN	Description						
	6,876	98	Roofs, HSC	ЭC					
	6,102	98	Paved park	ing, HSG C)				
	3,444	74	>75% Gras	s cover, Go	ood, HSG C				
	16,422	93	Weighted A	Veighted Average					
	3,444		20.97% Pervious Area						
	12,978		79.03% Imp	pervious Ar	ea				
Тс	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 16S: Subcatchment 16S

Runoff = 1.24 cfs @ 12.09 hrs, Volume= 0.100 af, Depth= 5.18" Routed to Pond 12P : Jellyfish #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

A	rea (sf)	CN	Description						
	2,984	98	Roofs, HSC	G C					
	6,322	98	Paved park	ing, HSG C	С				
	807	74	>75% Gras	s cover, Go	Good, HSG C				
	10,113	96	Weighted A	Veighted Average					
	807		7.98% Perv	7.98% Pervious Area					
	9,306		92.02% Imp	pervious Ar	rea				
_									
Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 17S: Subcatchment 17S

Runoff	=	0.11 cfs @	12.09 hrs,	Volume=	0.009 af,	Depth= 5.41"
Routed	to Pond	13P : Lined	Stone Drip	Edge		

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 20

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	792	98	Roofs, HSC	ЭС				
	100	98	Water Surfa	ace, 0% im	np, HSG C			
	892	98	Weighted Average					
	100		11.21% Pervious Area					
	792		88.79% lm	pervious Ar	rea			
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity	Capacity (cfs)	Description			
6.0	(1001)	(101	(1000)	(010)	Direct Entry,			

Summary for Subcatchment 18S: Subcatchment 18S

Runoff = 1.93 cfs @ 12.14 hrs, Volume= 0.159 af, Depth= 3.57" Routed to Reach 7R : 15" HDPE Culvert

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=5.65"

Area (sf)	CN	Description		
4,667	74	>75% Gras	s cover, Go	ood, HSG C
18,709	83	1/4 acre lot	s, 38% imp	o, HSG C
23,376	81	Weighted A	verage	
16,267		69.59% Pe	vious Area	a
7,109		30.41% Imp	pervious Ar	rea
Tc Length	Slop	be Velocity	Capacity	Description
(min) (feet)	(ft/1	ft) (ft/sec)	(cfs)	
10.0				Direct Entry,

Summary for Subcatchment 19S: Subcatchment 19S

Runoff = 1.14 cfs @ 12.09 hrs, Volume= 0.093 af, Depth= 5.30" Routed to Pond 15P : Jellyfish #2

 Area (sf)	CN	Description
561	74	>75% Grass cover, Good, HSG C
2,984	98	Roofs, HSG C
5,660	98	Paved roads w/curbs & sewers, HSG C
9,205	97	Weighted Average
561		6.09% Pervious Area
8,644		93.91% Impervious Area

24029 PR CONDITION	Type III 24-hr 10-Year Storm Rainfall=5.65"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Softwa	are Solutions LLC Page 21
Tc Length Slope Velocity Capacity Descr (min) (feet) (ft/ft) (ft/sec) (cfs)	iption
6.0 Direc	t Entry,
Summary for Reach 2R	a: Channel through 1S
Inflow Area = 8.184 ac, 57.64% Impervious, Infl Inflow = 7.47 cfs @ 12.45 hrs, Volume= Outflow = 7.47 cfs @ 12.46 hrs, Volume= Routed to Reach 2Rb : Channel through 1S	ow Depth > 4.16" for 10-Year Storm event 2.838 af 2.838 af, Atten= 0%, Lag= 0.5 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48. Max. Velocity= 3.38 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.34 fps, Avg. Travel Time= 1.7 min	00 hrs, dt= 0.05 hrs / 3
Peak Storage= 301 cf @ 12.46 hrs Average Depth at Peak Storage= 0.59' , Surface Width Bank-Full Depth= 6.00' Flow Area= 120.0 sf, Capacity	= 5.53' /= 1,586.21 cfs
2.00' x 6.00' deep channel, n= 0.040 Winding stream Side Slope Z-value= 4.0 2.0 '/' Top Width= 38.00' Length= 136.0' Slope= 0.0294 '/' Inlet Invert= 24.00', Outlet Invert= 20.00'	n, pools & shoals
Summary for Reach 2R	b: Channel through 1S
[61] Hint: Exceeded Reach 2Ra outlet invert by 0.18' @ [62] Hint: Exceeded Reach 5R OUTLET depth by 0.16') 12.60 hrs @ 12.25 hrs
Inflow Area = 9.149 ac, 60.50% Impervious, Infl	ow Depth > 4.15" for 10-Year Storm event

Inflow=8.18 cfs @12.59 hrs, Volume=3.166 afOutflow=8.18 cfs @12.60 hrs, Volume=3.165 af, Atten= 0%, Lag= 0.9 minRouted to Reach 2Rc : Channel through 1S3.165 af, Atten= 0%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.27 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.20 fps, Avg. Travel Time= 2.1 min

Peak Storage= 551 cf @ 12.60 hrs Average Depth at Peak Storage= 0.18', Surface Width= 21.05' Bank-Full Depth= 6.00' Flow Area= 228.0 sf, Capacity= 4,170.50 cfs

24029 PR CONDITION	Type III 24-hr	10-Year Storm Rail	nfall=5.65
Prepared by Jones & Beach Engineers Inc		Printed	11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software	Solutions LLC		Page 22

20.00' x 6.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 4.0 2.0 '/' Top Width= 56.00' Length= 153.0' Slope= 0.0392 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

‡

Summary for Reach 2Rc: Channel through 1S

[62] Hint: Exceeded Reach 2Rb OUTLET depth by 0.10' @ 12.25 hrs

Inflow Area =	10.889 ac, 57.86% Impervious, Inflow Depth > 4.03" for 10-Year Storm event
Inflow =	10.89 cfs @ 12.20 hrs, Volume= 3.657 af
Outflow =	10.81 cfs @ 12.23 hrs, Volume= 3.656 af, Atten= 1%, Lag= 1.7 min
Routed to Rea	ch AP1 : Analysis Point 1
Routing by Dyn-S	tor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3
Max. Velocity= 1.9	94 fps, Min. Travel Time= 2.6 min
Avg. Velocity = 0.8	32 fps, Avg. Travel Time= 6.1 min
Peak Storage= 1,0	688 cf @ 12.23 hrs
Average Depth at	Peak Storage= 0.27' , Surface Width= 21.61'
Bank-Full Depth=	6.00' Flow Area= 228.0 sf, Capacity= 2,705.34 cfs
20.00' x 6.00' de	ep channel, n= 0.040 Winding stream, pools & shoals
Side Slope Z-valu	e= 4.0 2.0 '/' Top Width= 56.00'
Length= 303.0' S	slope= 0.0165 '/'
Inlet Invert= 14.00	', Outlet Invert= 9.00'
‡	

Summary for Reach 3R: 15" HDPE Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.562 ac, 13.93% Impervious, Inflow Depth =2.99" for 10-Year Storm eventInflow =1.45 cfs @12.22 hrs, Volume=0.140 afOutflow =1.45 cfs @12.22 hrs, Volume=0.140 af, Atten= 0%, Lag= 0.1 minRouted to Reach 4R : Flow through 1S15

24029 PR CONDITIONType III 24-hr10-Year Storm Rainfall=5.65"Prepared by Jones & Beach Engineers IncPrinted11/4/2024HydroCAD® 10.20-3cs/n 00762© 2023 HydroCAD Software Solutions LLCPage 23

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.57 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 0.6 min

Peak Storage= 19 cf @ 12.22 hrs Average Depth at Peak Storage= 0.46', Surface Width= 1.20' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.10 cfs

15.0" Round Pipe n= 0.012 Length= 47.0' Slope= 0.0053 '/' Inlet Invert= 34.75', Outlet Invert= 34.50'

Summary for Reach 4R: Flow through 1S

[61] Hint: Exceeded Reach 3R outlet invert by 0.35' @ 12.25 hrs

Inflow Area = 0.562 ac, 13.93% Impervious, Inflow Depth = 2.99" for 10-Year Storm event Inflow = 1.45 cfs @ 12.22 hrs, Volume= 0.140 af Outflow = 1.44 cfs @ 12.25 hrs, Volume= 0.140 af, Atten= 1%, Lag= 1.5 min Routed to Reach 7R : 15" HDPE Culvert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.03 fps, Min. Travel Time= 1.6 min Avg. Velocity = 0.75 fps, Avg. Travel Time= 4.4 min

Peak Storage= 142 cf @ 12.25 hrs Average Depth at Peak Storage= 0.35', Surface Width= 3.08' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 14.80 cfs

1.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 200.0' Slope= 0.0125 '/' Inlet Invert= 34.50', Outlet Invert= 32.00'

Summary for Reach 5R: Channel through 1S

Inflow Area = 0.958 ac, 85.36% Impervious, Inflow Depth > 4.08" for 10-Year Storm event Inflow 0.76 cfs @ 12.60 hrs, Volume= 0.326 af = 0.76 cfs @ 12.61 hrs, Volume= 0.326 af, Atten= 0%, Lag= 0.6 min Outflow = Routed to Reach 2Rb : Channel through 1S Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 1.44 fps, Min. Travel Time= 0.9 min Avg. Velocity = 0.80 fps, Avg. Travel Time= 1.6 min Peak Storage= 41 cf @ 12.61 hrs Average Depth at Peak Storage= 0.05', Surface Width= 10.52' Bank-Full Depth= 2.00' Flow Area= 40.0 sf, Capacity= 498.13 cfs 10.00' x 2.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 5.0 '/' Top Width= 30.00' Length= 77.0' Slope= 0.0779 '/' Inlet Invert= 26.00', Outlet Invert= 20.00' ‡

Summary for Reach 6R: SEE NOTES

If 16P is routed directly to downstream 2P, 16P appears to overflow due to unrealistic tailwater conditions. In reality, the water from the infiltration chambers will not seep into the upstream Eco-Pavers underneath the unit decks. Therefore, a reach needs to be inserted into the model to separate the two devices.

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.077 ac,10	0.00% Impervious	, Inflow Depth =	5.41"	for 10-Year Storm ever	nt
Inflow	=	0.36 cfs @	12.14 hrs, Volum	e= 0.035	5 af		
Outflow	=	0.36 cfs @	12.14 hrs, Volum	e= 0.035	5 af, Attei	n= 0%, Lag= 0.0 min	
Routed	to Pond	2P : Infiltration	on System A				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach 7R: 15" HDPE Culvert

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach 4R OUTLET depth by 0.02' @ 8.50 hrs

Inflow Are	a =	1.099 ac, 2	1.98% Imperv	rious, In	flow Depth =	3.27"	for 10-Year Storm event
Inflow	=	3.12 cfs @	12.17 hrs, Vo	olume=	0.299	af	
Outflow	=	3.12 cfs @	12.17 hrs, Vo	olume=	0.299	af, Atte	en= 0%, Lag= 0.0 min
Routed	to Read	ch 2Rc : Char	nel through 1	S			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 12.69 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.58 fps, Avg. Travel Time= 0.1 min

Peak Storage= 5 cf @ 12.17 hrs Average Depth at Peak Storage= 0.32' , Surface Width= 1.09' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 22.13 cfs

15.0" Round Pipe n= 0.012 Length= 20.0' Slope= 0.1000 '/' Inlet Invert= 32.00', Outlet Invert= 30.00'

Summary for Reach AP1: Analysis Point 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	Area =	15.724 ac, 4	9.63% Impervious,	Inflow Depth >	3.86"	for 10-Year	Storm event
Inflow	=	26.11 cfs @	12.19 hrs, Volume	= 5.052	af		
Outflow	v =	26.11 cfs @	12.19 hrs, Volume	= 5.052	af, Att	en= 0%, Lag	= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.363 ac, 54.42% Impervious, Inflow Depth = 4.10" for 10-Year Storm event Inflow = 7.34 cfs @ 12.45 hrs, Volume= 2.518 af Outflow = 7.34 cfs @ 12.45 hrs, Volume= 2.518 af, Atten= 0%, Lag= 0.0 min Routed to Reach 2Ra : Channel through 1S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.051 ac,10	0.00% Impervio	us, Inflow De	epth = 5.4	41" for 10-	Year Storm event
Inflow	=	0.28 cfs @	12.09 hrs, Volu	me=	0.023 af		
Outflow	=	0.28 cfs @	12.09 hrs, Volu	me=	0.023 af,	Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP5: Analysis Point 5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.007 ac,	0.00% Impervious,	Inflow Depth =	2.89" for	10-Year Storm event
Inflow	=	0.02 cfs @	12.09 hrs, Volume	= 0.002 a	af	
Outflow	=	0.02 cfs @	12.09 hrs, Volume	= 0.002 a	af, Atten= 0°	%, Lag= 0.0 min
Routed	to Read	h 2Rb : Cha	nnel through 1S			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP6: Analysis Point 6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.186 ac, 55.43% Impervious, I	nflow Depth = 4.18" for 10-Year Storm ever	ıt
Inflow	=	0.73 cfs @ 12.16 hrs, Volume=	0.065 af	
Outflow	=	0.73 cfs @ 12.16 hrs, Volume=	0.065 af, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Bioretention Pond #1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=4)

Inflow Area	a =	0.881 ac, 8	84.08% Impe	ervious,	Inflow	Depth =	4.95	for	10-Y	ear Sto	rm event
Inflow	=	4.61 cfs @	12.09 hrs,	Volume	=	0.363	af				
Outflow	=	0.94 cfs @	12.51 hrs,	Volume	=	0.351	af, A	tten=	80%,	Lag= 2	5.6 min
Primary	=	0.94 cfs @	12.51 hrs,	Volume	=	0.881	af				
Routed	to Pond	DMH1 : Dra	ain Manhole	1							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.17' @ 12.52 hrs Surf.Area= 2,839 sf Storage= 5,443 cf

Plug-Flow detention time= 103.2 min calculated for 0.351 af (97% of inflow) Center-of-Mass det. time= 83.0 min (853.1 - 770.1)

 Volume
 Invert
 Avail.Storage
 Storage
 Description

 #1
 28.74'
 6,702 cf
 Custom Stage Data (Irregular)Listed below (Recalc)

Type III 24-hr 10-Year Storm Rainfall=5.65"

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Printed 11/4/2024 Page 27

Elevatio (fee	on et)	Surf.Area (sɑ-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sɑ-ft)
28.7		926	197.0	0.0	0	0	926
28.7	75	926	197.0	40.0	4	4	928
29.7	74	926	197.0	40.0	367	370	1,123
29.7	75	926	197.0	15.0	1	372	1,125
31.2	24	926	197.0	15.0	207	579	1,419
31.2	25	926	197.0	5.0	0	579	1,420
31.4	19	926	197.0	5.0	11	590	1,468
31.5	50	926	197.0	100.0	9	600	1,470
32.0	00	1,235	215.0	100.0	538	1,138	2,069
34.0	00	2,697	268.0	100.0	3,838	4,976	4,162
34.2	24	2,900	274.0	100.0	671	5,648	4,429
34.2	25	3,983	264.0	100.0	34	5,682	4,857
34.5	50	4,183	269.0	100.0	1,021	6,702	5,080
Device	Routing	Inve	ert Outle	et Device	es		
#1	Primary	28.7	5' 18.0 '	" Round	d Culvert		
			L= 3	6.0' CP	P, projecting, no he	adwall, Ke= 0.900)
			Inlet	/ Outlet I	nvert= 28.75' / 28.5	55' S= 0.0056 '/'	Cc= 0.900
			n= 0	.012, Flo	ow Area= 1.77 sf		
#2	Device 1	28.7	5' 4.0''	Vert. Or	ifice/Grate C= 0.6	600 Limited to we	ir flow at low heads
#3	Device 1	34.1	0' 24.0 '	" Horiz. (Orifice/Grate C= (0.600	
			Limit	ed to we	ir flow at low heads		

Primary OutFlow Max=0.92 cfs @ 12.51 hrs HW=34.17' TW=32.34' (Dynamic Tailwater)

1=Culvert (Passes 0.92 cfs of 9.08 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.57 cfs @ 6.51 fps)

-3=Orifice/Grate (Weir Controls 0.36 cfs @ 0.85 fps)

Summary for Pond 2P: Infiltration System A

[80] Warning: Exceeded Pond DMH1 by 0.07' @ 26.30 hrs (1.72 cfs 0.730 af)

Inflow Area	a =	0.958 ac, 8	5.36% Imperv	ious, Inflow [Depth > 11.47"	for 10-Y	ear Storm event
Inflow	=	1.05 cfs @	12.51 hrs, Vo	olume=	0.916 af		
Outflow	=	0.93 cfs @	12.60 hrs, Vo	olume=	0.831 af, At	ten= 11%,	Lag= 5.5 min
Discarded	=	0.17 cfs @	12.60 hrs, Vo	olume=	0.505 af		
Primary	=	0.76 cfs @	12.60 hrs, Vo	olume=	0.326 af		
Routed	to Reac	h 5r : Chann	el through 1S				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.36' @ 12.60 hrs Surf.Area= 1,008 sf Storage= 3,920 cf

Plug-Flow detention time= 211.6 min calculated for 0.830 af (91% of inflow) Center-of-Mass det. time= 93.8 min (1,703.2 - 1,609.4)

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024 solutions LLC Page 28

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	28.00'	0 cf	24.00'W x 42.00'L x 5.67'H Field A
			5,715 cf Overall - 5,715 cf Embedded = 0 cf x 40.0% Voids
#2A	28.00'	4,500 cf	Shea Leaching Chamber 8x14x5.7x 9 Inside #1
			Inside= 84.0"W x 60.0"H => 38.46 sf x 13.00'L = 500.0 cf
			Outside= 96.0"W x 68.0"H => 45.36 sf x 14.00'L = 635.0 cf
			9 Chambers in 3 Rows
		4 500 cf	Total Available Storage

4,500 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	28.00'	1.450 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 26.91' Phase-In= 0.10'
#2	Primary	32.00'	12.0" Round Culvert X 2.00
			L= 8.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 32.00' / 31.90' S= 0.0125 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.17 cfs @ 12.60 hrs HW=32.36' (Free Discharge) **1=Exfiltration** (Controls 0.17 cfs)

Primary OutFlow Max=0.76 cfs @ 12.60 hrs HW=32.36' TW=26.05' (Dynamic Tailwater) ←2=Culvert (Barrel Controls 0.76 cfs @ 2.26 fps)

Summary for Pond 2PF: Bioretention Pond #1 Forebay

[43] Hint: Has no inflow (Outflow=Zero)

Volume	Invert	Avail	Storage	Storage Description						
#1	32.25'		674 cf	Custom Stage Data (Irregular)Listed below (Recal						
Elevation	Sur	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)				
32.25		41	83.0	0	0	41				
34.00		650	138.0	498	498	1,027				
34.25		756	143.0	176	674	1,145				

Summary for Pond 3P: Focal Point #1

[90] Warning: Qout>Qin may require smaller dt or Finer Routing [87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)

Inflow Area	a =	0.140 ac, 8	39.23% Impe	rvious,	Inflow De	epth =	5.06"	for 10-	Year Storm event
Inflow	=	0.74 cfs @	12.09 hrs, V	Volume	=	0.059	af		
Outflow	=	0.75 cfs @	12.09 hrs, \	Volume	=	0.059	af, Atte	en= 0%,	Lag= 0.3 min
Primary	=	0.75 cfs @	12.09 hrs, \	Volume	=	0.059	af		
Routed	to Pond	4P : Infiltrati	ion System E	3					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Peak Elev= 29.60' @ 12.09 hrs Surf.Area= 103 sf Storage= 42 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.1 min (766.2 - 765.1)

Volume	Inv	ert Avail.Sto	orage	Storage Description				
#1	26.	75'	11 cf	5.00'W x 5	5.00'L x 2.25'H Foo	al Point		
				56 cf Over	all x 20.0% Voids			
#2	29.)0'	<u>69 ct</u>	Surface B	owl (Prismatic)Lis	ted below (Recalc)		
			80 cf	Total Avail	able Storage			
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)			
29.0	00	25		0	0			
30.0	00	113		69	69			
Device	Routing	Invert	Outl	et Devices				
#1 #2 #3	Primary Device	26.00' 26.75' 29.50'	12.0 L= 1 Inlet n= 0 100. 18.0 Limit	" Round C 3.0' CPP, / Outlet Inv 0.012, Flow 000 in/hr E " Horiz. Or ted to weir f	Culvert projecting, no head ert= 26.00' / 25.50' Area= 0.79 sf xfiltration over Su ifice/Grate C= 0.6 low at low heads	lwall, Ke= 0.900 S= 0.0385 '/' Cc= 0.900 I rface area Phase-In= 0.10' 600		

Primary OutFlow Max=0.73 cfs @ 12.09 hrs HW=29.60' TW=24.79' (Dynamic Tailwater) **1=Culvert** (Passes 0.73 cfs of 5.26 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.24 cfs)

-2=Extilitration (Extilitration Controls 0.24 cis)

-3=Orifice/Grate (Weir Controls 0.49 cfs @ 1.04 fps)

Summary for Pond 4P: Infiltration System B

Inflow Area	a =	0.164 ac, 8	38.12% Impe	ervious,	Inflow	Depth =	5.1	1" for	10-Y	'ear Stor	m event
Inflow	=	0.87 cfs @	12.09 hrs,	Volume	=	0.070	af				
Outflow	=	0.05 cfs @	13.69 hrs,	Volume	=	0.070	af, /	Atten=	94%,	Lag= 98	5.9 min
Discarded	=	0.05 cfs @	13.69 hrs,	Volume	=	0.070	af				
Primary	=	0.00 cfs @	0.00 hrs,	Volume	=	0.000	af				
Routed	to Reac	h 2rc : Chan	nel through	1S							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 25.96' @ 13.69 hrs Surf.Area= 672 sf Storage= 1,625 cf

Plug-Flow detention time= 358.1 min calculated for 0.070 af (100% of inflow) Center-of-Mass det. time= 358.5 min (1,121.7 - 763.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	23.25'	0 cf	16.00'W x 42.00'L x 4.67'H Field A
			3,138 cf Overall - 3,138 cf Embedded = 0 cf x 40.0% Voids
#2A	23.25'	2,400 cf	Shea Leaching Chamber 8x14x4.7x 6 Inside #1
			Inside= 84.0"W x 48.0"H => 30.77 sf x 13.00'L = 400.0 cf
			Outside= 96.0"W x 56.0"H => 37.36 sf x 14.00'L = 523.0 cf

Type III 24-hr 10-Year Storm Rainfall=5.65"Printed 11/4/2024Solutions LLCPage 30

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

6 Chambers in 2 Rows

2,400 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	23.25'	1.000 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 22.17' Phase-In= 0.10'
#2	Primary	26.80'	12.0" Round Culvert
			L= 5.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 26.80' / 26.70' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.05 cfs @ 13.69 hrs HW=25.96' (Free Discharge) **1=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=23.25' TW=14.00' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs)

Summary for Pond 5P: Lined Stone Drip Edge

[44] Hint: Outlet device #1 is below defined storage

ITTIOW AI	rea =	0.023 ac, 81.4	48% Impe	ervious, In	flow Dep	oth =	5.41"	for 1	0-Year	⁻ Storm e	event
Inflow	= ().13 cfs @ 12	2.09 hrs,	Volume=		0.011	af				
Outflow	= ().13 cfs 🥘 12	2.09 hrs,	Volume=	(0.011	af, Atte	en= 0%	6, Lag	= 0.5 mi	n
Primary	= ().13 cfs 🥘 12	2.09 hrs,	Volume=	(0.011	af				
Route	ed to Pond 4	1P : Infiltration	System	3							
Seconda	iry = 0).00 cfs @ (0.00 hrs,	Volume=	(0.000	af				
Route	ed to Reach	2Rc : Channe	el through	1S							
			0								
Routing I	by Dyn-Stor	-Ind method,	Time Spa	n= 0.00-48	8.00 hrs.	dt= 0	.05 hrs	/ 3			
Peak Ele	ev= 29.08' @	0 12.09 hrs [′] S	Surf.Area	= 0.003 ac	Storad	e= 0.0)00 af				
					5						
Plua-Flo	w detention	time= (not cal	culated:	outflow pre	ecedes ir	flow)					
Center-o	f-Mass det.	time= 0.3 min	(746.4 -	746.1		,					
			(, , ,							
Volume	Invert	Avail.Stora	age Sto	age Desci	ription						
Volume #1	Invert 29.01'	Avail.Stora 0.001	age Stol af 2.0 0	age Desci)'W x 63.0	ription 0'L x 1.0)1'H P	rismat	oid			
Volume #1	Invert 29.01'	Avail.Stora 0.001	age Stor af 2.00 0.00	rage Desci)'W x 63.0)3 af Overa	ription 0'L x 1.0 all x 40.0	01'H P 0% Va	rismat	oid			
<u>Volume</u> #1	Invert 29.01'	Avail.Stora 0.001	age Stor Laf 2.00 0.00	rage Descr I'W x 63.0)3 af Overa	ription 0'L x 1.0 all x 40.0	01'H P 0% Vo	rismat bids	oid			
Volume #1 Device	Invert 29.01' Routing	Avail.Stora 0.001 Invert	age Stor af 2.00 0.00 Outlet D	rage Desci J'W x 63.0)3 af Overa vevices	ription 0'L x 1.0 all x 40.0	01'H P 0% Vo	r ismat bids	oid			
Volume #1 Device #1	Invert 29.01' Routing Primary	Avail.Stora 0.001 Invert 29.00'	age Stor af 2.00 0.00 Outlet D 6.0" Ho	rage Descr D'W x 63.0 D3 af Overa Nevices riz. Orifice	ription 0'L x 1.0 all x 40.0 e/Grate	01'H P 0% Vo C= 0	pids	oid imited	to wei	r flow at	low heads
Volume #1 Device #1 #2	Invert 29.01' Routing Primary Secondary	Avail.Stora 0.001 Invert 29.00' 30.00'	age Stor af 2.00 0.00 Outlet D 6.0" Ho 63.0' Io	rage Descr D'W x 63.0 D3 af Overa vevices riz. Orifice ng x 1.0' I	ription 0'L x 1.0 all x 40.0 e/Grate breadth	01'H P 0% Vo C= 0 Broa	rismat bids .600 L d-Cres	oid imited	to wei	r flow at	low heads
Volume #1 Device #1 #2	Invert 29.01' Routing Primary Secondary	<u>Avail.Stora</u> 0.001 <u>Invert</u> 29.00' 30.00'	age Stor af 2.00 0.00 Outlet E 6.0" Ho 63.0' Io Head (fe	rage Descr D'W x 63.0 D3 af Overa evices riz. Orifice ng x 1.0' l eet) 0.20	ription 0'L x 1.0 all x 40.0 e/Grate breadth 0.40 0.6	01'H P 0% Vc C= 0 Broac	rismat bids .600 L d-Cres	oid imited ted Re	to wei ctang 1.40	r flow at ular We 1.60 1.8	low heads ir 0 2.00
Volume #1 Device #1 #2	Invert 29.01' Routing Primary Secondary	<u>Avail.Stora</u> 0.001 <u>Invert</u> 29.00' 30.00'	age Stor af 2.00 0.00 Outlet D 6.0" Ho 63.0' Io Head (fe 2.50 3.0	rage Descr D'W x 63.0 D3 af Overa evices riz. Orifice ng x 1.0' l eet) 0.20	ription 0'L x 1.0 all x 40.0 e/Grate breadth 0.40 0.6	01'H P 0% Vc C= 0 Broad 50 0.8	rismat bids .600 L d-Cres 60 1.00	oid imited ted Re 1.20	to wei ctang 1.40	r flow at ular We 1.60 1.8	low heads ir 60 2.00
Volume #1 Device #1 #2	Invert 29.01' Routing Primary Secondary	Avail.Stora 0.001 Invert 29.00' 30.00'	age Stor af 2.00 0.00 Outlet D 6.0" Ho 63.0' Io Head (fe 2.50 3.0 Coef, (E	rage Descr D'W x 63.0 D3 af Overa evices riz. Orifice ng x 1.0' l eet) 0.20 D0 (nglish) 2.0	ription 0'L x 1.0 all x 40.0 c/Grate breadth 0.40 0.6 69 2.72	01'H P 0% Vc C= 0 Broac 50 0.8 2.75	rismat bids .600 L d-Cres 50 1.00 2.85 2	oid imited ted Re 1.20 2.98 3	to wei ectang 1.40	r flow at ular We 1.60 1.8 20 3.28	low heads ir i0 2.00 3.31
Volume #1 Device #1 #2	Invert 29.01' Routing Primary Secondary	Avail.Stora 0.001 Invert 29.00' 30.00'	age Stor af 2.00 0.00 Outlet D 63.0' Io Head (fe 2.50 3.0 Coef. (E 3.30 3.3	rage Descr J'W x 63.0 03 af Overa evices riz. Orifice ng x 1.0' l eet) 0.20 00 00 01 3.32	ription 0'L x 1.0 all x 40.0 c/Grate breadth 0.40 0.6 69 2.72	01'H P 0% Vc C= 0 Broad 50 0.8 2.75	rismat bids .600 L d- Cres 50 1.00 2.85 2	oid imited ted Re 1.20 2.98 3	to wei ectang 1.40	r flow at ular We 1.60 1.8 20 3.28	low heads ir 0 2.00 3.31

Primary OutFlow Max=0.12 cfs @ 12.09 hrs HW=29.08' TW=24.80' (Dynamic Tailwater) **1=Orifice/Grate** (Weir Controls 0.12 cfs @ 0.95 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=29.01' TW=14.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 6P: Detention Pond

 Inflow Area =
 0.306 ac, 42.66% Impervious, Inflow Depth = 3.87" for 10-Year Storm event

 Inflow =
 1.34 cfs @ 12.09 hrs, Volume=
 0.099 af

 Outflow =
 0.19 cfs @ 12.62 hrs, Volume=
 0.098 af, Atten= 86%, Lag= 31.8 min

 Primary =
 0.19 cfs @ 12.62 hrs, Volume=
 0.098 af

 Routed to Pond AP3 : Existing Pond
 0.098 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.29' @ 12.62 hrs Surf.Area= 2,810 sf Storage= 1,910 cf

Plug-Flow detention time= 145.7 min calculated for 0.098 af (99% of inflow) Center-of-Mass det. time= 144.0 min (949.7 - 805.8)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	35.50	' 3,3	20 cf Custom	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio (fee	on S et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
35.9 36.0 36.7	50 00 75	2,056 2,529 3,267	0 1,146 2,174	0 1,146 3,320	
Device	Routing	Invert	Outlet Device	s	
#1	Primary	35.50'	12.0" Round L= 6.0' CPP Inlet / Outlet I n= 0.012, Flo	f Culvert , square edge he nvert= 35.50' / 38 ow Area= 0.79 sf	adwall, Ke= 0.500 5.40' S= 0.0167 '/' Cc= 0.900
#2 #3	Device 1 Primary	35.50' 36.50'	3.0" Vert. Or 6.0' long + 3 Head (feet) 0 2.50 3.00 3. Coef. (English 2.68 2.72 2.	ifice/Grate C= (6.0 '/' SideZ x 4.0 0.20 0.40 0.60 (50 4.00 4.50 5. h) 2.38 2.54 2.6 73 2.76 2.79 2.	 D.600 Limited to weir flow at low heads D' breadth Broad-Crested Rectangular Weir D.80 1.00 1.20 1.40 1.60 1.80 2.00 D0 5.50 D 2.68 2.67 2.67 2.65 2.66 2.66 B8 3.07 3.32
Primary	OutFlow	Max=0.19 cfs (@ 12.62 hrs H	W=36.29' TW=3	2.93' (Dynamic Tailwater)

-1=Culvert (Passes 0.19 cfs of 1.64 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.19 cfs @ 3.91 fps)

Summary for Pond 7P: Bioretention Pond #2

Inflow Area	a =	0.193 ac, 6	7.19% Imp	ervious,	Inflow	Depth =	4.6	0" for	10-Y	ear Storr	n event
Inflow	=	0.96 cfs @	12.09 hrs,	Volume	=	0.074	af				
Outflow	=	0.69 cfs @	12.17 hrs,	Volume	=	0.074	af,	Atten=	29%,	Lag= 5.1	min
Primary	=	0.69 cfs @	12.17 hrs,	Volume	=	0.074	af				
Routed	to Pond	AP3 : Existir	ng Pond								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.59' @ 12.17 hrs Surf.Area= 518 sf Storage= 360 cf

Plug-Flow detention time= 15.3 min calculated for 0.074 af (100% of inflow) Center-of-Mass det. time= 14.4 min (796.1 - 781.7)

Volume	Inve	rt Avail.S	torage	Storage	Description		
#1	31.74	4'	983 cf	Custom	Stage Data (Irreg	u lar) Listed below (F	Recalc)
Elevatio (fee	on s st)	Surf.Area (sq-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
31.7 31.7 32.7 32.7 34.2 34.2 34.4 34.5 35.0 35.5	74 75 74 75 24 25 49 50 50	490 490 490 490 490 490 490 490 664 853	111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 121.0 130.0	0.0 40.0 15.0 15.0 5.0 5.0 100.0 100.0 100.0	0 2 194 1 110 0 6 5 287 378	0 2 196 197 306 306 312 317 605 983	490 491 601 602 768 769 795 795 796 990 1,180
Device	Routing	Inve	rt Outle	et Devices	3		
#1 #2 #3	Primary Device 1 Device 1	31.75 31.75 35.20	5' 12.0 L= 8 Inlet n= 0 5' 4.0")' 18.0 Limi	" Round .0' CPP, / Outlet Ir .012, Flor Vert. Orit " Horiz. C ted to wei	Culvert projecting, no head overt= 31.75' / 31.60 w Area= 0.79 sf fice/Grate C= 0.60 Drifice/Grate C= 0 r flow at low heads	dwall, Ke= 0.900 0' S= 0.0187 '/' C 00 Limited to weir 0.600	c= 0.900 flow at low heads

Primary OutFlow Max=0.68 cfs @ 12.17 hrs HW=34.53' TW=30.62' (Dynamic Tailwater)

-1=Culvert (Passes 0.68 cfs of 4.51 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.68 cfs @ 7.79 fps)

Summary for Pond 8P: Bioretention Pond #3

Inflow Area = 0.478 ac, 79.61% Impervious, Inflow Depth = 4.84" for 10-Year Storm event Inflow = 2.47 cfs @ 12.09 hrs, Volume= 0.193 af Outflow = 0.90 cfs @ 12.34 hrs, Volume= 0.193 af, Atten= 63%, Lag= 15.3 min Primary = 0.90 cfs @ 12.34 hrs, Volume= 0.193 af Routed to Pond 14P : Chamber System D Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.03' @ 12.34 hrs Surf.Area= 1,052 sf Storage= 1,366 cf

Plug-Flow detention time= 10.8 min calculated for 0.193 af (100% of inflow) Center-of-Mass det. time= 10.0 min (784.7 - 774.7)

Volume	Inve	ert Avail.	.Storage	Storage	Description		
#1	27.2	24'	2,651 cf	Custom	Stage Data (Irreg	ular) Listed below (F	Recalc)
Elevatio	on	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area
(166	<i>()</i>	(sq-it)	(leet)	(%)			(SQ-IL)
27.2	24	238	86.0	0.0	0	0	238
27.2	25	238	86.0	40.0	1	1	239
28.2	24	238	86.0	40.0	94	95	324
28.2	25	238	86.0	15.0	0	96	325
29.7	74	238	86.0	15.0	53	149	453
29.7	75	238	86.0	5.0	0	149	454
29.9	99	238	86.0	5.0	3	152	475
30.0	00	238	86.0	100.0	2	154	475
32.0	00	1.037	181.0	100.0	1.181	1.335	2.511
33.0	00	1,616	202.0	100.0	1,316	2,651	3,180
Device	Routing	Inv	ert Outle	et Devices	6		
#1	Primary	27.	25' 12.0	" Round	Culvert		
			L= 7	.0' CPP,	projecting, no head	dwall, Ke= 0.900	
			Inlet	/ Outlet Ir	vert= 27.25' / 27.0	0' S= 0.0357 '/' C	Cc= 0.900
			n= 0	.012. Flov	w Area= 0.79 sf		
#2	Device 1	27.	25' 4.0"	Vert. Orif	fice/Grate C= 0.6	00 Limited to weir	flow at low heads
#3	Device 1	Device 1 32.50' 18.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads					

Primary OutFlow Max=0.90 cfs @ 12.34 hrs HW=32.03' TW=27.24' (Dynamic Tailwater)

-1=Culvert (Passes 0.90 cfs of 6.18 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.90 cfs @ 10.34 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 10P: Focal Point #2

[90] Warning: Qout>Qin may require smaller dt or Finer Routing[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=3)

 Inflow Area =
 0.377 ac, 79.03% Impervious, Inflow Depth = 4.84" for 10-Year Storm event

 Inflow =
 1.95 cfs @
 12.09 hrs, Volume=
 0.152 af

 Outflow =
 1.95 cfs @
 12.09 hrs, Volume=
 0.152 af, Atten= 0%, Lag= 0.2 min

 Primary =
 1.95 cfs @
 12.09 hrs, Volume=
 0.152 af, Atten= 0%, Lag= 0.2 min

 Primary =
 1.95 cfs @
 12.09 hrs, Volume=
 0.152 af

 Routed to Pond DMH2 : Drain Manhole 2
 0.152 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Peak Elev= 38.22' @ 12.09 hrs Surf.Area= 173 sf Storage= 67 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.9 min (775.6 - 774.7)

Volume	Inve	ert Avail.Sto	orage	Storage D	escription	
#1	35.5	50'	27 cf	4.00'W x 1	5.00'L x 2.25'	H Focal Point
				135 cf Ove	erall_x 20.0% \	/oids
#2	37.7	75'	77 cf	Surface B	owl (Prismati	c) Listed below (Recalc)
		1	04 cf	Total Avail	able Storage	
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubio	c-feet)	(cubic-feet)	
37.7	75	60		0	0	
38.0	00	86		18	18	
38.5	50	148		59	77	
Device	Routing	Invert	Outle	et Devices		
#1	Primary	34.75'	12.0	" Round C	ulvert	
			L= 1	0.0' CPP,	projecting, no	headwall, Ke= 0.900
			Inlet	/ Outlet Inv	ert= 34.75' / 34	4.50' S= 0.0250 '/' Cc= 0.900
			n= 0	.012, Flow	Area= 0.79 sf	
#2	Device 1	35.50'	100.	000 in/hr E	xfiltration ove	er Surface area Phase-In= 0.10'
#3	Device 1	38.00'	18.0	" Horiz. Or	ifice/Grate C	= 0.600
			Limit	ed to weir f	low at low hea	ds

Primary OutFlow Max=1.91 cfs @ 12.09 hrs HW=38.21' TW=35.12' (Dynamic Tailwater)

-1=Culvert (Passes 1.91 cfs of 5.14 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.40 cfs)

-3=Orifice/Grate (Weir Controls 1.51 cfs @ 1.51 fps)

Summary for Pond 11P: Chamber System C

[80] Warning: Exceeded Pond 12P by 0.26' @ 24.35 hrs (0.25 cfs 0.009 af) [80] Warning: Exceeded Pond DMH4 by 1.18' @ 17.80 hrs (3.47 cfs 0.874 af)

Inflow Area	a =	0.820 ac, 8	6.54% Imp	ervious,	Inflow	Depth =	5.0)5" foi	· 10-Y	ear Sto	rm event
Inflow	=	4.32 cfs @	12.09 hrs,	Volume	=	0.345	af				
Outflow	=	0.14 cfs @	15.63 hrs,	Volume	=	0.321	af,	Atten=	97%,	Lag= 2	12.6 min
Primary	=	0.14 cfs @	15.63 hrs,	Volume	=	0.321	af			•	
Routed to Reach 2Ra : Channel through 1S											

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.23' @ 15.63 hrs Surf.Area= 5,824 sf Storage= 10,303 cf

Plug-Flow detention time= 811.6 min calculated for 0.321 af (93% of inflow) Center-of-Mass det. time= 773.0 min (1,537.9 - 765.0)

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 35

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	32.25'	0 cf	32.00'W x 182.00'L x 4.67'H Field A
			27,198 cf Overall - 27,198 cf Embedded = 0 cf x 40.0% Voids
#2A	32.25'	20,800 cf	Shea Leaching Chamber 8x14x4.7x 52 Inside #1
			Inside= 84.0"W x 48.0"H => 30.77 sf x 13.00'L = 400.0 cf
			Outside= 96.0"W x 56.0"H => 37.36 sf x 14.00'L = 523.0 cf
			52 Chambers in 4 Rows
		20,800 of	Total Available Storage

20,800 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices					
#1	Primary	31.58'	12.0" Round Culvert					
	·		L= 20.0' CPP, projecting, no headwall, Ke= 0.900					
			Inlet / Outlet Invert= 31.58' / 31.40' S= 0.0090 '/' Cc= 0.900					
			n= 0.012, Flow Area= 0.79 sf					
#2	Device 1	32.25'	2.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads					
#3	Device 2	32.25'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads					

Primary OutFlow Max=0.14 cfs @ 15.63 hrs HW=34.23' TW=24.26' (Dynamic Tailwater)

1=Culvert (Passes 0.14 cfs of 4.38 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.63 fps)

3=Orifice/Grate (Passes 0.14 cfs of 0.57 cfs potential flow)

Summary for Pond 12P: Jellyfish #1

Inflow Area	a =	0.232 ac, 9	92.02% Imp	ervious,	Inflow Depth	= 5.18	" for 10-	Year Storm event
Inflow	=	1.24 cfs @	12.09 hrs,	Volume	= 0.10	0 af		
Outflow	=	1.24 cfs @	12.09 hrs,	Volume	= 0.10	0 af, A	tten= 0%,	Lag= 0.0 min
Primary	=	1.24 cfs @	12.09 hrs,	Volume	= 0.10	0 af		
Routed	to Pond	11P : Cham	ber System	С				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.23' @ 15.63 hrs Flood Elev= 36.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	33.55'	15.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 33.55' / 33.40' S= 0.0075 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=1.21 cfs @ 12.09 hrs HW=34.18' TW=33.37' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 1.21 cfs @ 2.86 fps)
Summary for Pond 13P: Lined Stone Drip Edge

Inflow Ar	ea =	0.020 ac, 88.7	79% Impervious, Inflow Depth = 5.41" for 10-Year Storm event
Inflow	=	0.11 cfs @ 12	2.09 hrs, Volume= 0.009 af
Outflow	=	0.11 cfs @ 12	2.09 hrs, Volume= 0.009 af, Atten= 0%, Lag= 0.4 min
Primarv	=	0.11 cfs @ 12	2.09 hrs. Volume= 0.009 af
Route	ed to Pond	7P · Bioretentio	n Pond #2
Seconda			0.00 brs //olume = 0.000 sf
Bouto	iy - d to Dond	AD2 · Evicting	Dond
Roule		APS. Existing	Polid
Routing	by Dyn-Sto	r-ina metnoa,	1 Ime Span = 0.00-48.00 nrs, dt = 0.05 nrs / 3
Peak Ele	ev= 35.08' (ay 12.09 hrs S	ourf.Area= 0.002 ac Storage= 0.000 af
Plug-Flov	w detentior	n time= 1.0 min	calculated for 0.009 af (100% of inflow)
Center-o	f-Mass det	. time= 1.1 min	(747.1 - 746.1)
Volume	Inver	t Avail.Stora	ge Storage Description
#1	35.00	' 0.001	af 2.00'W x 48.00'L x 1.01'H Prismatoid
			0.002 af Overall x 40.0% Voids
Device	Routing	Invert	Outlet Devices
#1	Primary	35 00'	6 0" Horiz Orifice/Grate C= 0 600 imited to weir flow at low heads
#2	Secondary	× 36.00'	63 0' long x 1 0' breadth Broad-Crested Rectangular Weir
π ∠	Occornally	y 00.00	Hoad (fast) 0.20.0.40.0.60.0.90.1.00.1.20.1.40.1.60.1.90.2.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32
Primary	OutFlow N	Max=0.11 cfs @	ᢧ 12.09 hrs HW=35.08' TW=34.00' (Dynamic Tailwater)
1=0ri	fice/Grate	(Weir Controls	0.11 cfs @ 0.91 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=35.00' TW=26.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 14P: Chamber System D

Inflow Area	a =	0.478 ac, 7	9.61% Imp	ervious,	Inflow	Depth =	4.84"	for	10-Y	'ear Storr	n event
Inflow	=	0.90 cfs @	12.34 hrs,	Volume	=	0.193	af				
Outflow	=	0.55 cfs @	13.12 hrs,	Volume	=	0.193	af, At	ten= 3	39%,	Lag= 46	.8 min
Primary	=	0.55 cfs @	13.12 hrs,	Volume	=	0.193	af			•	
Routed to Reach 2Rc : Channel through 1S											

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 27.91' @ 13.12 hrs Surf.Area= 1,344 sf Storage= 2,292 cf

Plug-Flow detention time= 58.1 min calculated for 0.193 af (100% of inflow) Center-of-Mass det. time= 57.4 min (842.1 - 784.7)

Type III 24-hr 10-Year Storm Rainfall=5.65" Printed 11/4/2024

Page 37

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	26.00'	0 cf	24.00'W x 56.00'L x 3.67'H Field A
			4,932 cf Overall - 4,932 cf Embedded = 0 cf x 40.0% Voids
#2A	26.00'	3,600 cf	Shea Leaching Chamber 8x14x3.7x 12 Inside #1
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
			12 Chambers in 3 Rows
		3,600 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	25.33'	12.0" Round Culvert
			L= 16.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 25.33' / 25.10' S= 0.0144 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Device 1	26.00'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.55 cfs @ 13.12 hrs HW=27.91' TW=14.24' (Dynamic Tailwater) 1=Culvert (Passes 0.55 cfs of 4.30 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.55 cfs @ 6.35 fps)

Summary for Pond 15P: Jellyfish #2

Inflow Area	a =	0.211 ac, 9	3.91% Imper	vious, Inflow	Depth = 3	5.30" fo	or 10-Year	Storm event
Inflow	=	1.14 cfs @	12.09 hrs, \	/olume=	0.093 a	af		
Outflow	=	1.14 cfs @	12.09 hrs, \	/olume=	0.093 a	af, Atten=	= 0%, Lag	= 0.0 min
Primary	=	1.14 cfs @	12.09 hrs, \	/olume=	0.093 a	af	C	
Routed	to Pond	DMH4 : Dra	in Manhole 4					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.23' @ 15.63 hrs Flood Elev= 36.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	33.25'	15.0" Round Culvert L= 16.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 33.25' / 33.10' S= 0.0094 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=1.11 cfs @ 12.09 hrs HW=33.88' TW=33.63' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.11 cfs @ 2.62 fps)

Summary for Pond 16P: Eco Paver

24029 Prepare <u>HydroCA</u>	PR CONDIT ed by Jones & D® 10.20-3c s	T ION Beach En /n 00762 © 2	gineers Inc 2023 HydroCAD Software 3	Type III 24-hr Solutions LLC	10-Year Storm Rainfall=5.65" Printed 11/4/2024 Page 38
Inflow A Inflow Outflow Primary Rout Seconda Rout	rea = 0.0 = 0.4 = 0.3 = 0.3 ed to Reach 6 ary = 0.0 ed to Reach 5	077 ac,100.0 1 cfs @ 12 6 cfs @ 12 6 cfs @ 12 R : SEE NO 0 cfs @ 0 R : Channel	00% Impervious, Inflow I 2.09 hrs, Volume= 2.14 hrs, Volume= 2.14 hrs, Volume= TES 0.00 hrs, Volume= through 1S	Depth = 5.41" 0.035 af 0.035 af, Atter 0.035 af 0.000 af	for 10-Year Storm event n= 14%, Lag= 3.0 min
Routing Peak Ele Plug-Flo Center-o	by Dyn-Stor-Ir ev= 28.87' @ 1 ow detention tir of-Mass det. tir	nd method, ⁻ 2.14 hrs S ne= 16.0 mi ne= 15.5 mi	Time Span= 0.00-48.00 H ourf.Area= 576 sf Storag n calculated for 0.035 af n (761.6 - 746.1)	nrs, dt= 0.05 hrs / ge= 109 cf (100% of inflow)	3
Volume	Invert	Avail.Stor	age Storage Descriptio	on	
#1	28.40'	23	3 cf 6.00'W x 96.00'L 582 cf Overall x 4	x 1.01'H Prismat 0.0% Voids	oid
Device	Routing	Invert	Outlet Devices		
#1 #2 #3	Primary Device 1 Secondary	28.40' 28.40' 29.40'	6.0" Round Culvert L= 20.0' CPP, projectin Inlet / Outlet Invert= 28. n= 0.012, Flow Area= 0 6.0" Vert. Orifice/Grate 96.0' long x 0.5' bread Head (feet) 0.20 0.40 Coef. (English) 2.80 2	ng, no headwall, .40' / 28.00' S= ().20 sf e C= 0.600 Lim ith Broad-Creste 0.60 0.80 1.00 .92 3.08 3.30 3.	Ke= 0.900 0.0200 '/' Cc= 0.900 nited to weir flow at low heads ad Rectangular Weir 32
Primary ¹ −1=Cι ¹ −2=	• OutFlow Max ulvert (Inlet Co =Orifice/Grate	k=0.35 cfs @ ontrols 0.35 (Passes 0.3	12.14 hrs HW=28.87' cfs @ 1.84 fps) 35 cfs of 0.45 cfs potenti	TW=0.00' (Dyn al flow)	amic Tailwater)
Second ¹ —3=Br	ary OutFlow I oad-Crested I	Max=0.00 cf Rectangula	s @ 0.00 hrs HW=28.40 r Weir (Controls 0.00 cfs)' TW=26.00' (E ≋))ynamic Tailwater)

Summary for Pond AP3: Existing Pond

15" CMP culvert inlet is buried. Contractor to uncover culvert inlet.

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=34)

 Inflow Area =
 6.995 ac, 53.69% Impervious, Inflow Depth =
 4.08" for 10-Year Storm event

 Inflow =
 19.01 cfs @
 12.35 hrs, Volume=
 2.380 af

 Outflow =
 7.00 cfs @
 12.86 hrs, Volume=
 2.380 af, Atten= 63%, Lag= 30.5 min

 Primary =
 7.00 cfs @
 12.86 hrs, Volume=
 2.380 af

 Routed to Reach AP2 : Analysis Point 2
 2.380 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 33.10' @ 12.86 hrs Surf.Area= 13,383 sf Storage= 21,993 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Volume Invert Avail.Storage Storage Description #1 26.00' 104,430 cf Custom Stage Data (Irregular)Listed below (Recalc) Elevation Surf.Area Perim. Inc.Store Cum.Store Wet.Area (cubic-feet) (feet) (sq-ft) (feet) (cubic-feet) (sq-ft) 26.00 1 1.0 0 0 1 37 29 29 53 28.00 24.0 30.00 2,236 218.0 1,707 1,736 3,797 15,721 32.00 7,294 444.0 9,046 10,782 34.00 19,719 933.0 26,004 36,786 69,323 35.50 43,192 1,107.0 46,047 82,834 97,611 36.00 43,192 21,596 104,430 98,164 1,107.0 Invert Outlet Devices Device Routing 15.0" Round Culvert #1 Primary 26.00' L= 156.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 26.00' / 24.09' S= 0.0122 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.23 sf

Center-of-Mass det. time= 18.5 min (841.9 - 823.4)

Primary OutFlow Max=7.00 cfs @ 12.86 hrs HW=33.10' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 7.00 cfs @ 5.71 fps)

Summary for Pond DMH1: Drain Manhole 1

[80] Warning: Exceeded Pond 1P by 1.22' @ 27.85 hrs (0.46 cfs 0.884 af)

Inflow Area	a =	0.881 ac, 8	4.08% Impe	ervious,	Inflow I	Depth >	12.0	0" fo	or 10-	Year Storn	n event
Inflow	=	0.94 cfs @	12.51 hrs,	Volume	=	0.881	af				
Outflow	=	0.94 cfs @	12.51 hrs,	Volume	=	0.881	af,	Atten	= 0%,	Lag= 0.0 r	min
Primary	=	0.94 cfs @	12.51 hrs,	Volume	=	0.881	af			-	
Routed	to Pond	2P : Infiltrati	on System /	4							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.37' @ 12.59 hrs Flood Elev= 35.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	28.45'	18.0" Round Culvert L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 28.45' / 28.10' S= 0.0067 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=0.94 cfs @ 12.51 hrs HW=32.34' TW=32.32' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.94 cfs @ 0.53 fps)

Summary for Pond DMH2: Drain Manhole 2

 Inflow Area =
 0.377 ac, 79.03% Impervious, Inflow Depth = 4.84" for 10-Year Storm event

 Inflow =
 1.95 cfs @ 12.09 hrs, Volume=
 0.152 af

 Outflow =
 1.95 cfs @ 12.09 hrs, Volume=
 0.152 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.95 cfs @ 12.09 hrs, Volume=
 0.152 af

 Routed to Pond 11P : Chamber System C
 0.152 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 35.13' @ 12.09 hrs Flood Elev= 38.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.40'	18.0" Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.40' / 34.20' S= 0.0143 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=1.91 cfs @ 12.09 hrs HW=35.12' TW=33.38' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 1.91 cfs @ 3.34 fps)

Summary for Pond DMH4: Drain Manhole 4

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=67)[80] Warning: Exceeded Pond 15P by 0.52' @ 24.40 hrs (0.88 cfs 0.049 af)

Inflow Area =0.211 ac, 93.91% Impervious, Inflow Depth =5.30" for 10-Year Storm eventInflow =1.14 cfs @12.09 hrs, Volume=0.093 afOutflow =1.14 cfs @12.09 hrs, Volume=0.093 af, Atten= 0%, Lag= 0.0 minPrimary =1.14 cfs @12.09 hrs, Volume=0.093 afRouted to Pond 11P : Chamber System C0.093 af0.093 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.23' @ 15.63 hrs Flood Elev= 37.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	33.00'	15.0" Round Culvert L= 23.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 33.00' / 32.80' S= 0.0087 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf
			L= 23.0° CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 33.00' / 32.80' S= 0.0087 '/' Cc= 0.90 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=1.11 cfs @ 12.09 hrs HW=33.63' TW=33.37' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.11 cfs @ 2.61 fps)

24029 PR CONDITION	Type III 24-hr	25-Year Storm Rail	nfall=7.18"
Prepared by Jones & Beach Engineers Inc		Printed	11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software	Solutions LLC		Page 41

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=210,582 sf 31.09% Impervious Runoff Depth=4.86" Flow Length=588' Tc=13.2 min CN=80 Runoff=21.47 cfs 1.958 af
Subcatchment2S: Subcatchment2S	Runoff Area=16,051 sf 68.26% Impervious Runoff Depth=6.00" Flow Length=125' Tc=10.9 min CN=90 Runoff=2.06 cfs 0.184 af
Subcatchment3S: Subcatchment3S	Runoff Area=282,964 sf 53.81% Impervious Runoff Depth=5.54" Flow Length=604' Tc=26.3 min CN=86 Runoff=24.58 cfs 2.998 af
Subcatchment4S: Subcatchment4S	Runoff Area=2,236 sf 100.00% Impervious Runoff Depth=6.94" Tc=6.0 min CN=98 Runoff=0.35 cfs 0.030 af
Subcatchment5S: Subcatchment5S	Runoff Area=310 sf 0.00% Impervious Runoff Depth=4.20" Tc=6.0 min CN=74 Runoff=0.03 cfs 0.002 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,122 sf 55.43% Impervious Runoff Depth=5.65" Flow Length=149' Tc=12.0 min CN=87 Runoff=0.97 cfs 0.088 af
Subcatchment7S: Subcatchment7S	Runoff Area=24,490 sf 13.93% Impervious Runoff Depth=4.31" Flow Length=212' Tc=15.9 min CN=75 Runoff=2.09 cfs 0.202 af
Subcatchment8S: Subcatchment8S	Runoff Area=38,380 sf 84.08% Impervious Runoff Depth=6.47" Tc=6.0 min CN=94 Runoff=5.93 cfs 0.475 af
Subcatchment9S: Subcatchment9S	Runoff Area=6,117 sf 89.23% Impervious Runoff Depth=6.58" Tc=6.0 min CN=95 Runoff=0.95 cfs 0.077 af
Subcatchment10S: Subcatchment10S	Runoff Area=1,015 sf 81.48% Impervious Runoff Depth=6.94" Tc=6.0 min CN=98 Runoff=0.16 cfs 0.013 af
Subcatchment11S: Subcatchment11S	Runoff Area=13,311 sf 42.66% Impervious Runoff Depth=5.31" Tc=6.0 min CN=84 Runoff=1.81 cfs 0.135 af
Subcatchment12S: Subcatchment12S	Runoff Area=7,530 sf 64.63% Impervious Runoff Depth=6.00" Tc=6.0 min CN=90 Runoff=1.12 cfs 0.086 af
Subcatchment13S: Subcatchment13S	Runoff Area=20,822 sf 79.61% Impervious Runoff Depth=6.35" Tc=6.0 min CN=93 Runoff=3.19 cfs 0.253 af
Subcatchment14S: Subcatchment14S	Runoff Area=3,343 sf 100.00% Impervious Runoff Depth=6.94" Tc=6.0 min CN=98 Runoff=0.53 cfs 0.044 af
Subcatchment15S: Subcatchment15S	Runoff Area=16,422 sf 79.03% Impervious Runoff Depth=6.35" Tc=6.0 min CN=93 Runoff=2.52 cfs 0.199 af
Subcatchment16S: Subcatchment16S	Runoff Area=10,113 sf 92.02% Impervious Runoff Depth=6.70" Tc=6.0 min CN=96 Runoff=1.58 cfs 0.130 af

24029 PR CONDITION	Type III 24-hr 25-Year Storm Rainfall=7.18"
Prepared by Jones & Beach Engineers In	c Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 Hydro	CAD Software Solutions LLC Page 42
Subcatchment17S: Subcatchment17S	Runoff Area=892 sf 88.79% Impervious Runoff Depth=6.94" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.012 af
Subcatchment18S: Subcatchment18S	Runoff Area=23,376 sf 30.41% Impervious Runoff Depth=4.97" Tc=10.0 min CN=81 Runoff=2.67 cfs 0.222 af
Subcatchment19S: Subcatchment19S	Runoff Area=9,205 sf 93.91% Impervious Runoff Depth=6.82" Tc=6.0 min CN=97 Runoff=1.45 cfs 0.120 af
Reach 2Ra: Channel through 1S Av n=0.040 L=136.0'	g. Flow Depth=0.62' Max Vel=3.47 fps Inflow=8.28 cfs 3.814 af S=0.0294 '/' Capacity=1,586.21 cfs Outflow=8.29 cfs 3.814 af
Reach 2Rb: Channel through 1S Avg n=0.040 L=153.0'	. Flow Depth=0.21' Max Vel=2.54 fps Inflow=10.88 cfs 4.296 af S=0.0392 '/' Capacity=4,170.50 cfs Outflow=10.88 cfs 4.296 af
Reach 2Rc: Channel through 1S Avg n=0.040 L=303.0'	. Flow Depth=0.32' Max Vel=2.18 fps Inflow=14.86 cfs 4.973 af S=0.0165 '/' Capacity=2,705.34 cfs Outflow=14.81 cfs 4.971 af
Reach 3R: 15" HDPE Culvert Av 15.0" Round Pipe n=0.012 L=4	g. Flow Depth=0.56' Max Vel=3.94 fps Inflow=2.09 cfs 0.202 af 7.0' S=0.0053 '/' Capacity=5.10 cfs Outflow=2.09 cfs 0.202 af
Reach 4R: Flow through 1S Av n=0.030 L=200	g. Flow Depth=0.41' Max Vel=2.24 fps Inflow=2.09 cfs 0.202 af 0.0' S=0.0125 '/' Capacity=14.80 cfs Outflow=2.07 cfs 0.202 af
Reach 5R: Channel through 1S Av n=0.040 L=77.	g. Flow Depth=0.11' Max Vel=2.33 fps Inflow=2.76 cfs 0.480 af 0' S=0.0779 '/' Capacity=498.13 cfs Outflow=2.78 cfs 0.480 af
Reach 6R: SEE NOTES	Inflow=0.44 cfs 0.044 af Outflow=0.44 cfs 0.044 af
Reach 7R: 15" HDPE CulvertAvg15.0" Round Pipen=0.012L=20	. Flow Depth=0.38' Max Vel=14.02 fps Inflow=4.42 cfs 0.424 af 0.0' S=0.1000 '/' Capacity=22.13 cfs Outflow=4.42 cfs 0.424 af
Reach AP1: Analysis Point 1	Inflow=34.82 cfs 6.929 af Outflow=34.82 cfs 6.929 af
Reach AP2: Analysis Point 2	Inflow=8.14 cfs 3.416 af Outflow=8.14 cfs 3.416 af
Reach AP4: Analysis Point 4	Inflow=0.35 cfs 0.030 af Outflow=0.35 cfs 0.030 af
Reach AP5: Analysis Point 5	Inflow=0.03 cfs 0.002 af Outflow=0.03 cfs 0.002 af
Reach AP6: Analysis Point 6	Inflow=0.97 cfs 0.088 af Outflow=0.97 cfs 0.088 af
Pond 1P: Bioretention Pond #1	Peak Elev=34.33' Storage=6,010 cf Inflow=5.93 cfs 0.475 af Outflow=2.80 cfs 0.461 af

24029 PR CONDITION	Type III 24-hr 25-Year Storm Rainfall=7.18"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroC	CAD Software Solutions LLC Page 43
Pond 2P: Infiltration System A Discarded=0.18 cfs	Peak Elev=32.76' Storage=4,288 cf Inflow=3.14 cfs 1.088 af 0.522 af Primary=2.76 cfs 0.480 af Outflow=2.95 cfs 1.002 af
Pond 2PF: Bioretention Pond #1 Forebay	Peak Elev=0.00' Storage=0 cf
Pond 3P: Focal Point #1	Peak Elev=29.63' Storage=44 cf Inflow=0.95 cfs 0.077 af Outflow=0.95 cfs 0.077 af
Pond 4P: Infiltration System B Discarded=0.07 cfs	Peak Elev=26.84' Storage=2,152 cf Inflow=1.11 cfs 0.091 af 0.090 af Primary=0.00 cfs 0.000 af Outflow=0.07 cfs 0.091 af
Pond 5P: Lined Stone Drip Edge Primary=0.16 cfs 0.0	Peak Elev=29.10' Storage=0.000 af Inflow=0.16 cfs 0.013 af 013 af Secondary=0.00 cfs 0.000 af Outflow=0.16 cfs 0.013 af
Pond 6P: Detention Pond	Peak Elev=36.53' Storage=2,635 cf Inflow=1.81 cfs 0.135 af Outflow=0.31 cfs 0.135 af
Pond 7P: Bioretention Pond #2	Peak Elev=34.85' Storage=507 cf Inflow=1.26 cfs 0.098 af Outflow=0.72 cfs 0.098 af
Pond 8P: Bioretention Pond #3	Peak Elev=32.58' Storage=2,029 cf Inflow=3.19 cfs 0.253 af Outflow=1.31 cfs 0.253 af
Pond 10P: Focal Point #2	Peak Elev=38.27' Storage=73 cf Inflow=2.52 cfs 0.199 af Outflow=2.53 cfs 0.199 af
Pond 11P: Chamber System C	Peak Elev=34.88' Storage=13,693 cf Inflow=5.56 cfs 0.449 af Outflow=0.17 cfs 0.398 af
Pond 12P: Jellyfish#1 15.0" Round C	Peak Elev=34.88' Inflow=1.58 cfs 0.130 af Culvert n=0.012 L=20.0' S=0.0075 '/' Outflow=1.58 cfs 0.130 af
Pond 13P: Lined Stone Drip Edge Primary=0.14 cfs 0.0	Peak Elev=35.09' Storage=0.000 af Inflow=0.14 cfs 0.012 af 012 af Secondary=0.00 cfs 0.000 af Outflow=0.14 cfs 0.012 af
Pond 14P: Chamber System D	Peak Elev=28.34' Storage=2,809 cf Inflow=1.31 cfs 0.253 af Outflow=0.62 cfs 0.253 af
Pond 15P: Jellyfish#2 15.0" Round C	Peak Elev=34.88' Inflow=1.45 cfs 0.120 af Culvert n=0.012 L=16.0' S=0.0094 '/' Outflow=1.45 cfs 0.120 af
Pond 16P: Eco Paver Primary=0.44 cfs 0.0	Peak Elev=28.99' Storage=137 cf Inflow=0.53 cfs 0.044 af 044 af Secondary=0.00 cfs 0.000 af Outflow=0.44 cfs 0.044 af
Pond AP3: Existing Pond 15.0" Round Cu	Peak Elev=33.98' Storage=36,312 cf Inflow=25.40 cfs 3.231 af Ilvert n=0.025 L=156.0' S=0.0122 '/' Outflow=7.39 cfs 3.231 af
Pond DMH1: Drain Manhole 1 18.0" Round C	Peak Elev=32.92' Inflow=2.80 cfs 1.044 af Culvert n=0.012 L=52.0' S=0.0067 '/' Outflow=2.80 cfs 1.044 af

24029 PR CONDITION	Type III 24-hr 25-Year Storm Rainfall=7.18"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD S	Software Solutions LLC Page 44
Pond DMH2: Drain Manhole 2 18.0" Round Culver	Peak Elev=35.25' Inflow=2.53 cfs 0.199 af rt n=0.012 L=14.0' S=0.0143 '/' Outflow=2.53 cfs 0.199 af
Pond DMH4: Drain Manhole 4 15.0" Round Culver	Peak Elev=34.88' Inflow=1.45 cfs 0.120 af nt n=0.012 L=23.0' S=0.0087 '/' Outflow=1.45 cfs 0.120 af

Total Runoff Area = 15.961 acRunoff Volume = 7.231 afAverage Runoff Depth = 5.44"50.14% Pervious = 8.003 ac49.86% Impervious = 7.959 ac

Summary for Subcatchment 1S: Subcatchment 1S

Runoff = 21.47 cfs @ 12.18 hrs, Volume= Routed to Reach AP1 : Analysis Point 1 1.958 af, Depth= 4.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

Ar	ea (sf)	CN	Description					
	3,301	55	Woods, Good, HSG B					
	960	98	Paved road	s w/curbs &	& sewers, HSG B			
	16,077	98	Roofs, HSC	ЭC				
	46,575	98	Paved road	s w/curbs &	& sewers, HSG C			
	16,368	74	>75% Gras	s cover, Go	bod, HSG C			
	93,752	70	Woods, Go	od, HSG C				
	4,879	83	1/4 acre lot	s, 38% imp	, HSG C			
	28,670	77	Woods, Go	od, HSG D				
2	10,582	80	Weighted A	verage				
1	45,116		68.91% Pei	rvious Area	l			
	65,466		31.09% Imp	pervious Ar	ea			
Tc	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
7.2	34	0.0294	. 0.08		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.69"			
4.6	16	0.0204	0.06		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.69"			
0.2	82	0.0294	5.69	55.51	Trap/Vee/Rect Channel Flow, Assumed 1.5' flow depth - Ch	nanne		
					Bot.W=2.00' D=1.50' Z= 4.0 & 2.0 '/' Top.W=11.00'			
					n= 0.040 Winding stream, pools & shoals			
0.3	153	0.0392	8.51	312.68	Trap/Vee/Rect Channel Flow, Assumed 1.5' flow depth - Ch	nanne		
					Bot.W=20.00' D=1.50' Z= 4.0 & 2.0 '/' Top.W=29.00'			
					n= 0.040 Winding stream, pools & shoals			
0.9	303	0.0165	5.52	202.86	Trap/Vee/Rect Channel Flow, Assumed 1.5' flow depth - Ch	nanne		
					Bot.W=20.00' D=1.50' Z= 4.0 & 2.0 '/' Top.W=29.00'			
					n= 0.040 Winding stream, pools & shoals			
13.2	588	Total						

Summary for Subcatchment 2S: Subcatchment 2S

Runoff = 2.06 cfs @ 12.15 hrs, Volume= Routed to Reach AP2 : Analysis Point 2 0.184 af, Depth= 6.00"

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 46

Prepared by Jones & E	Beach Engineers Inc	
HydroCAD® 10.20-3c s/n	00762 © 2023 HydroCAD S	oftware Solutions LLC

A	rea (sf)	CN	Description		
	7,339	98	Paved road	ls w/curbs &	& sewers, HSG C
	3,618	98	Roofs, HSC	θC	
	2,694	74	>75% Gras	s cover, Go	ood, HSG C
	2,400	70	Woods, Go	od, HSG C	
	16.051	90	Weighted A	verade	
	5 094		31 74% Pe	rvious Area	
	10 057		68.26% Imr		22
	10,357		00.2070 mi		ca
Tc	l enath	Slone	Velocity	Canacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
	25	0 0 0 0 0 5	0.07	(010)	Shoot Elow
0.2	30	0.0223	0.07		Moode: Light underbruch n= 0,400 D2= 2,60"
1 0	15	0 0005	0 1 2		Shoot Flow
1.9	15	0.0225	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.69"
0.7	47	0.0274	1.16		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.1	28	0.2143	3.24		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
10.9	125	Total			

Summary for Subcatchment 3S: Subcatchment 3S

Runoff	=	24.58 cfs @	12.35 hrs,	Volume=	2.998 af,	Depth= 5.54"
Routed	d to Por	nd AP3 : Existir	ng Pond			

Area (sf) CN	Description
125,302	2 98	Paved roads w/curbs & sewers, HSG C
9,379	9 98	Roofs, HSG C
7,425	5 74	>75% Grass cover, Good, HSG C
73,762	2 70	Woods, Good, HSG C
46,242	1 83	1/4 acre lots, 38% imp, HSG C
15,690) 77	Woods, Good, HSG D
5,165	5 98	Water Surface, 0% imp, HSG D
282,964	4 86	Weighted Average
130,71 <i>°</i>	1	46.19% Pervious Area
152,253	3	53.81% Impervious Area

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 47

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
11.5	50	0.0200	0.07		Sheet Flow,
3.5	119	0.0126	0.56		Woods: Light underbrush n= 0.400 P2= 3.69" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
1.5	74	0.0270	0.82		Shallow Concentrated Flow,
2.6	107	0.0187	0.68		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps
5.7	180	0.0111	0.53		Shallow Concentrated Flow,
1.5	74	0.0270	0.82		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woodland Kv= 5.0 fps

26.3 604 Total

Summary for Subcatchment 4S: Subcatchment 4S

0.030 af, Depth= 6.94"

Runoff = 0.35 cfs @ 12.09 hrs, Volume= Routed to Reach AP4 : Analysis Point 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

Are	ea (sf)	CN I	Description		
	2,236	98 I	Paved park	ing, HSG C	
	2,236		100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, 6 minute minimum Tc per TR-55

Summary for Subcatchment 5S: Subcatchment 5S

Runoff = 0.03 cfs @ 12.09 hrs, Volume= 0.002 af, Depth= 4.20" Routed to Reach AP5 : Analysis Point 5

A	rea (sf)	CN	Description					
	310	74	>75% Grass cover, Good, HSG C					
	310		100.00% P	ervious Are	a			
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, 6 minute minimum Tc per TR-55			

Summary for Subcatchment 6S: Subcatchment 6S

Runoff = 0.97 cfs @ 12.16 hrs, Volume= 0.088 af, Depth= 5.65" Routed to Reach AP6 : Analysis Point 6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

A	rea (sf)	CN	Description						
	4,023	98	Paved roads w/curbs & sewers, HSG C						
	479	98	Roofs, HSC	ЭC					
	3,620	74 :	>75% Gras	s cover, Go	bod, HSG C				
	8,122	87	Weighted A	verage					
	3,620	4	44.57% Pe	rvious Area					
	4,502	1	55.43% Im	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
9.9	50	0.0041	0.08		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.69"				
1.7	47	0.0041	0.45		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
0.4	52	0.0100	2.03		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
10.0	110	Tatal							

12.0 149 Total

Summary for Subcatchment 7S: Subcatchment 7S

Runoff = 2.09 cfs @ 12.22 hrs, Volume= 0.202 af, Depth= 4.31" Routed to Reach 3R : 15" HDPE Culvert

Area (sf)	CN	Description
1,350	98	Paved roads w/curbs & sewers, HSG C
3,607	74	>75% Grass cover, Good, HSG C
14,109	70	Woods, Good, HSG C
5,424	83	1/4 acre lots, 38% imp, HSG C
24,490	75	Weighted Average
21,079		86.07% Pervious Area
3,411		13.93% Impervious Area

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 49

Prepared by Jones & Bea	ch Engineers Inc	
HydroCAD® 10.20-3c s/n 007	62 © 2023 HydroCAD Software Solutions Ll	_C

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.9	50	0.0183	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.69"
0.2	7	0.0183	0.68		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
2.6	91	0.0134	0.58		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.2	58	0.0134	0.81		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.0	6	0.2500	3.50		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps

15.9 212 Total

Summary for Subcatchment 8S: Subcatchment 8S

Runoff	=	5.93	cfs @	12.09 hrs,	Volume=
Routed	to Pond	1P :	Bioreter	ntion Pond	#1

0.475 af, Depth= 6.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

A	rea (sf)	CN	Description		
	23,203	98	Paved road	ls w/curbs &	& sewers, HSG C
	6,109	74	>75% Gras	s cover, Go	lood, HSG C
	9,068	98	Roofs, HSC	ЭC	
	38,380	94	Weighted A	verage	
	6,109		15.92% Pe	rvious Area	a
	32,271		84.08% Imp	pervious Ar	rea
_					
Tc	Length	Slop	e Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment 9S: Subcatchment 9S

Runoff = 0.95 cfs @ 12.09 hrs, Volume= 0.077 af, Depth= 6.58" Routed to Pond 3P : Focal Point #1

Area (sf)	CN	Description
4,645	98	Paved roads w/curbs & sewers, HSG C
659	74	>75% Grass cover, Good, HSG C
813	98	Roofs, HSG C
6,117	95	Weighted Average
659		10.77% Pervious Area
5,458		89.23% Impervious Area

HydroCA	D® 10.20-	3c s/n 00	762 © 202	3 HydroCA	D Software S	olutions LLC	Page 50
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	ı	
6.0					Direct Ent	ry,	
		Sum	mary fo	r Subcate	chment 10	S: Subcatchment 10S	
Runoff Route	= ed to Pon	0.16 cfs d 5P : Lir	s @ 12.0 ned Stone	9 hrs, Volu Drip Edge	ime=	0.013 af, Depth= 6.94"	
Runoff b Type III :	y SCS TF 24-hr 25-	R-20 metł ∙Year Sto	nod, UH=S rm Rainfa	SCS, Weigh ll=7.18"	nted-CN, Tin	ne Span= 0.00-48.00 hrs, dt= 0.05 hr	S
А	rea (sf)	CN D	escription				
	827 188	98 R 98 V	oofs, HSC /ater Surfa	G C C impace, 0% imp	p, HSG C		
	1,015 188 827	98 W 1 8	/eighted A 8.52% Pei 1.48% Imp	verage vious Area pervious Ar	ea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	1	
6.0					Direct Ent	ry,	

Summary for Subcatchment 11S: Subcatchment 11S

Runoff = 1.81 cfs @ 12.09 hrs, Volume= Routed to Pond 6P : Detention Pond

24029 PR CONDITION

Prepared by Jones & Beach Engineers Inc

0.135 af, Depth= 5.31"

Type III 24-hr 25-Year Storm Rainfall=7.18"

Printed 11/4/2024

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

A	rea (sf)	CN	Description			
	5,679	98	Roofs, HSC	G C		
	7,431	74	>75% Gras	s cover, Go	ood, HSG C	
	201	70	Woods, Go	od, HSG C		
	13,311	84	Weighted A	verage		
	7,632		57.34% Pe	rvious Area	1	
	5,679		42.66% Imp	pervious Ar	ea	
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Summary for Subcatchment 12S: Subcatchment 12S

Runoff = 1.12 cfs @ 12.09 hrs, Volume= Routed to Pond 7P : Bioretention Pond #2 0.086 af, Depth= 6.00"

A	rea (sf)	CN	Description		
	1,411	98	Roofs, HSC	G C	
	3,456	98	Paved park	ing, HSG C	C
	2,663	74	>75% Gras	s cover, Go	ood, HSG C
	7,530	90	Weighted A	verage	
	2,663		35.37% Per	vious Area	а
	4,867		64.63% Imp	pervious Ar	rea
Тс	l enath	Slone	a Velocity	Canacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	Description
6.0	(1001)	(1010) (10000)	(010)	Direct Entry,

Summary for Subcatchment 13S: Subcatchment 13S

Runoff	=	3.19 cfs @	12.09 hrs,	Volume=	0.253 af,	Depth=	6.35"
Routed	to Pond	3 8P : Biorete	ntion Pond	#3			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

A	rea (sf)	CN	Description						
	2,582	98	Roofs, HSC	ЭС					
	13,994	98	Paved park	ing, HSG C)				
	4,246	74	>75% Gras	s cover, Go	ood, HSG C				
	20,822	93	Weighted A	verage					
	4,246		20.39% Pervious Area						
	16,576		79.61% lm	pervious Ar	ea				
_									
Tc	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 14S: Subcatchment 14S

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 0.044 af, Depth= 6.94" Routed to Pond 16P : Eco Paver

A	rea (sf)	CN	Description		
	3,343	98	Roofs, HSC	G C	
	3,343		100.00% In	npervious A	Area
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment 15S: Subcatchment 15S

Runoff = 2.52 cfs @ 12.09 hrs, Volume= 0.199 af, Depth= 6.35" Routed to Pond 10P : Focal Point #2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

Are	ea (sf)	CN	Description			
	6,876	98	Roofs, HSC	ЭC		
	6,102	98	Paved park	ing, HSG C)	
	3,444	74	>75% Gras	s cover, Go	ood, HSG C	
1	6,422	22 93 Weighted Average				
	3,444 20.97% Pervious Area					
1	2,978	2,978 79.03% Impervious Area				
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Summary for Subcatchment 16S: Subcatchment 16S

Runoff = 1.58 cfs @ 12.09 hrs, Volume= 0.130 af, Depth= 6.70" Routed to Pond 12P : Jellyfish #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

A	rea (sf)	CN	Description				
	2,984	98	Roofs, HSC	G C			
	6,322	98	Paved park	ing, HSG C	C		
	807	74	>75% Gras	s cover, Go	lood, HSG C		
	10,113	96	Weighted A	verage			
	807		7.98% Pervious Area				
	9,306		92.02% Imp	pervious Ar	rea		
Tc	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment 17S: Subcatchment 17S

Runoff	=	0.14 cfs @	12.09 hrs,	Volume=	0.012 af,	Depth= 6.94"
Routed	to Pond	13P : Lined	Stone Drip	Edge		

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 53

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	792	98	Roofs, HSC	ЭC				
	100	98	Water Surfa	Nater Surface, 0% imp, HSG C				
	892	98	Weighted A	verage				
	100	00 11.21% Pervious Area						
	792	2 88.79% Impervious Area						
Tc (min)	Length (feet)	Slop (ft/f	e Velocity) (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 18S: Subcatchment 18S

Runoff = 2.67 cfs @ 12.14 hrs, Volume= 0.222 af, Depth= 4.97" Routed to Reach 7R : 15" HDPE Culvert

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Storm Rainfall=7.18"

Area (sf)	CN	Description					
4,667	74	>75% Gras	s cover, Go	ood, HSG C			
18,709	83	1/4 acre lot	s, 38% imp	o, HSG C			
23,376	81	Weighted A	verage				
16,267		69.59% Pervious Area					
7,109		30.41% Impervious Area					
Tc Length	Slop	be Velocity	Capacity	Description			
(min) (feet)	(ft/1	t) (ft/sec)	(cfs)				
10.0				Direct Entry,			

Summary for Subcatchment 19S: Subcatchment 19S

Runoff = 1.45 cfs @ 12.09 hrs, Volume= 0.120 af, Depth= 6.82" Routed to Pond 15P : Jellyfish #2

 Area (sf)	CN	Description
561	74	>75% Grass cover, Good, HSG C
2,984	98	Roofs, HSG C
5,660	98	Paved roads w/curbs & sewers, HSG C
9,205	97	Weighted Average
561		6.09% Pervious Area
8,644		93.91% Impervious Area

24029 PR CONDITION	Type III 24-hr 25-Year Storm Rainfall=7.18"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
<u>Hydrocad® 10.20-30 s/1100762 © 2023 Hydrocad Solo</u>	vare solutions LLC Page 54
Tc Length Slope Velocity Capacity Dese (min) (feet) (ft/ft) (ft/sec) (cfs)	ription
6.0 Dire	ct Entry,
Summary for Reach 2	Ra: Channel through 1S
[90] Warning: Qout>Qin may require smaller dt or Fine	er Routing
Inflow Area = 8.184 ac, 57.64% Impervious, In Inflow = 8.28 cfs @ 12.19 hrs, Volume= Outflow = 8.29 cfs @ 12.20 hrs, Volume= Routed to Reach 2Rb : Channel through 1S	flow Depth > 5.59" for 25-Year Storm event 3.814 af 3.814 af, Atten= 0%, Lag= 0.7 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48 Max. Velocity= 3.47 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.44 fps, Avg. Travel Time= 1.6 min	3.00 hrs, dt= 0.05 hrs / 3
Peak Storage= 324 cf @ 12.20 hrs Average Depth at Peak Storage= 0.62' , Surface Widt Bank-Full Depth= 6.00' Flow Area= 120.0 sf, Capaci	h= 5.71' ty= 1,586.21 cfs
2.00' x 6.00' deep channel, n= 0.040 Winding stread Side Slope Z-value= 4.0 2.0 '/' Top Width= 38.00 ' Length= 136.0 ' Slope= 0.0294 '/' Inlet Invert= 24.00 ', Outlet Invert= 20.00 '	ım, pools & shoals
Summary for Reach 2F	tb: Channel through 1S
[90] Warning: Qout>Qin may require smaller dt or Fin [61] Hint: Exceeded Reach 2Ra outlet invert by 0.21' ([62] Hint: Exceeded Reach 5R OUTLET depth by 0.15	er Routing @ 12.30 hrs 7' @ 12.10 hrs
Inflow Area = 9.149 ac, 60.50% Impervious, In Inflow = 10.88 cfs @ 12.32 hrs, Volume= Outflow = 10.88 cfs @ 12.32 hrs, Volume= Routed to Reach 2Rc : Channel through 1S	flow Depth > 5.64" for 25-Year Storm event 4.296 af 4.296 af, Atten= 0%, Lag= 0.4 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48 Max. Velocity= 2.54 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 2.1 min	3.00 hrs, dt= 0.05 hrs / 3
Peak Storage= 654 cf @ 12.32 hrs Average Depth at Peak Storage= 0.21' , Surface Widt Bank-Full Depth= 6.00' Flow Area= 228.0 sf, Capaci	h= 21.24' ty= 4,170.50 cfs

24029 PR CONDITION Prepared by Jones & Beach Engineers Inc

20.00' x 6.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 4.0 2.0 '/' Top Width= 56.00' Length= 153.0' Slope= 0.0392 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

‡

Summary for Reach 2Rc: Channel through 1S

[62] Hint: Exceeded Reach 2Rb OUTLET depth by 0.12' @ 12.20 hrs

Inflow Area =	10.889 ac, 57.86% Impervious, Inflow Depth > 5.48" for 25-Year Storm event
Inflow = 1	4.86 cfs @ 12.29 hrs, Volume= 4.973 af
Outflow = 1	4.81 cfs @ 12.31 hrs, Volume= 4.971 af, Atten= 0%, Lag= 1.5 min
Routed to Reac	h AP1 : Analysis Point 1
Routing by Dyn-Sto	or-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3
Max. Velocity= 2.18	3 fps, Min. Travel Time= 2.3 min
Avg. Velocity = 0.86	6 fps, Avg. Travel Time= 5.9 min
Peak Storage= 2,09	55 cf @ 12.31 hrs
Average Depth at F	Peak Storage= 0.32' , Surface Width= 21.94'
Bank-Full Depth= 6	3.00' Flow Area= 228.0 sf, Capacity= 2,705.34 cfs
20.00' x 6.00' dee	ep channel, n= 0.040 Winding stream, pools & shoals
Side Slope Z-value	= 4.0 2.0 '/' Top Width= 56.00'
Length= 303.0' Slo	ope= 0.0165 '/'
Inlet Invert= 14.00',	, Outlet Invert= 9.00'
ŧ	

Summary for Reach 3R: 15" HDPE Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

0.562 ac, 13.93% Impervious, Inflow Depth = 4.31" for 25-Year Storm event Inflow Area = 2.09 cfs @ 12.22 hrs, Volume= 2.09 cfs @ 12.22 hrs, Volume= Inflow = 0.202 af = 0.202 af, Atten= 0%, Lag= 0.1 min Outflow Routed to Reach 4R : Flow through 1S

24029 PR CONDITIONType III 24-hr25-Year Storm Rainfall=7.18"Prepared by Jones & Beach Engineers IncPrinted11/4/2024HydroCAD® 10.20-3cs/n 00762© 2023 HydroCAD Software Solutions LLCPage 56

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 3.94 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.50 fps, Avg. Travel Time= 0.5 min

Peak Storage= 25 cf @ 12.22 hrs Average Depth at Peak Storage= 0.56', Surface Width= 1.24' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 5.10 cfs

15.0" Round Pipe n= 0.012 Length= 47.0' Slope= 0.0053 '/' Inlet Invert= 34.75', Outlet Invert= 34.50'

Summary for Reach 4R: Flow through 1S

[61] Hint: Exceeded Reach 3R outlet invert by 0.41' @ 12.25 hrs

Inflow Area = 0.562 ac, 13.93% Impervious, Inflow Depth = 4.31" for 25-Year Storm event Inflow = 2.09 cfs @ 12.22 hrs, Volume= 0.202 af Outflow = 2.07 cfs @ 12.24 hrs, Volume= 0.202 af, Atten= 1%, Lag= 1.3 min Routed to Reach 7R : 15" HDPE Culvert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.24 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 4.1 min

Peak Storage= 186 cf @ 12.24 hrs Average Depth at Peak Storage= 0.41', Surface Width= 3.48' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 14.80 cfs

1.00' x 1.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 200.0' Slope= 0.0125 '/' Inlet Invert= 34.50', Outlet Invert= 32.00'

Summary for Reach 5R: Channel through 1S

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =0.958 ac, 85.36% Impervious, Inflow Depth > 6.02" for 25-Year Storm eventInflow =2.76 cfs @12.32 hrs, Volume=0.480 afOutflow =2.78 cfs @12.32 hrs, Volume=0.480 af, Atten= 0%, Lag= 0.2 minRouted to Reach 2Rb : Channel through 1S15

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 2.33 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 1.6 min

Peak Storage= 91 cf @ 12.32 hrs Average Depth at Peak Storage= 0.11', Surface Width= 11.12' Bank-Full Depth= 2.00' Flow Area= 40.0 sf, Capacity= 498.13 cfs

10.00' x 2.00' deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 5.0 '/' Top Width= 30.00' Length= 77.0' Slope= 0.0779 '/' Inlet Invert= 26.00', Outlet Invert= 20.00'

‡

Summary for Reach 6R: SEE NOTES

If 16P is routed directly to downstream 2P, 16P appears to overflow due to unrealistic tailwater conditions. In reality, the water from the infiltration chambers will not seep into the upstream Eco-Pavers underneath the unit decks. Therefore, a reach needs to be inserted into the model to separate the two devices.

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.077 ac,10	0.00% Impe	ervious,	Inflow Dept	h = 6.	94" for	25-Year	Storm event
Inflow	=	0.44 cfs @	12.14 hrs,	Volume	= 0.	044 af			
Outflow	=	0.44 cfs @	12.14 hrs, '	Volume	= 0.	044 af,	Atten= 0	%, Lag=	= 0.0 min
Routed	to Pond	2P : Infiltrati	on System A	4					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach 7R: 15" HDPE Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

[62] Hint: Exceeded Reach 4R OUTLET depth by 0.02' @ 7.45 hrs

24029 PR CONDITION Type III 24-hr 25-Year Storm Rainfall=7.18" Prepared by Jones & Beach Engineers Inc Printed 11/4/2024 HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Page 58 1.099 ac, 21.98% Impervious, Inflow Depth = 4.63" for 25-Year Storm event Inflow Area = Inflow 4.42 cfs @ 12.17 hrs, Volume= = 0.424 af Outflow 4.42 cfs @ 12.17 hrs, Volume= 0.424 af, Atten= 0%, Lag= 0.0 min =

Routed to Reach 2Rc : Channel through 1S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Max. Velocity= 14.02 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.95 fps, Avg. Travel Time= 0.1 min

Peak Storage= 6 cf @ 12.17 hrs Average Depth at Peak Storage= 0.38', Surface Width= 1.15' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 22.13 cfs

15.0" Round Pipe n= 0.012 Length= 20.0' Slope= 0.1000 '/' Inlet Invert= 32.00', Outlet Invert= 30.00'

Summary for Reach AP1: Analysis Point 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow A	rea =	15.724 ac, 49.63% Impervious	Inflow Depth > 5.29	for 25-Year Storm event
Inflow	=	34.82 cfs @ 12.20 hrs, Volum	e= 6.929 af	
Outflow	=	34.82 cfs @ 12.20 hrs, Volum	e= 6.929 af, A	tten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP2: Analysis Point 2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	7.363 ac, 5	4.42% Imperv	vious, Inflov	v Depth =	5.57"	for 25-Y	ear Storm e	event
Inflow	=	8.14 cfs @	12.18 hrs, Vo	olume=	3.416	af			
Outflow	=	8.14 cfs @	12.18 hrs, Vo	olume=	3.416	af, Attei	n= 0%, L	_ag= 0.0 mi	n
Route	d to Rea	ach 2Ra : Chai	nel through 1	S					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP4: Analysis Point 4

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.051 ac,10	00.00% Impervious,	Inflow Depth = 6	6.94" for 25-	Year Storm event
Inflow	=	0.35 cfs @	12.09 hrs, Volume	e= 0.030 a	ıf	
Outflow	=	0.35 cfs @	12.09 hrs, Volume	e= 0.030 a	of, Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP5: Analysis Point 5

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	0.007 ac,	0.00% Impervious,	Inflow Depth =	4.20" for	25-Year Storm event
Inflow	=	0.03 cfs @	12.09 hrs, Volume	= 0.002	af	
Outflow	=	0.03 cfs @	12.09 hrs, Volume	= 0.002	af, Atten= 0)%, Lag= 0.0 min
Routed	I to Read	ch 2Rb : Cha	nnel through 1S			-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Reach AP6: Analysis Point 6

[40] Hint: Not Described (Outflow=Inflow)

Inflow Ar	ea =	0.186 ac, 55.43% I	mpervious, Inflov	v Depth = 5.65"	for 25-Year Storm event
Inflow	=	0.97 cfs @ 12.16 h	rs, Volume=	0.088 af	
Outflow	=	0.97 cfs @ 12.16 h	rs, Volume=	0.088 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Summary for Pond 1P: Bioretention Pond #1

 Inflow Area =
 0.881 ac, 84.08% Impervious, Inflow Depth = 6.47" for 25-Year Storm event

 Inflow =
 5.93 cfs @
 12.09 hrs, Volume=
 0.475 af

 Outflow =
 2.80 cfs @
 12.26 hrs, Volume=
 0.461 af, Atten= 53%, Lag= 10.4 min

 Primary =
 2.80 cfs @
 12.26 hrs, Volume=
 1.044 af

 Routed to Pond DMH1 : Drain Manhole 1
 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.33' @ 12.26 hrs Surf.Area= 4,048 sf Storage= 6,010 cf

Plug-Flow detention time= 91.6 min calculated for 0.461 af (97% of inflow) Center-of-Mass det. time= 74.2 min (838.2 - 764.0)

Volume	Invert	Avail.Storage	Storage Description
#1	28.74'	6,702 cf	Custom Stage Data (Irregular)Listed below (Recalc)

Type III 24-hr 25-Year Storm Rainfall=7.18"

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC Printed 11/4/2024 Page 60

Elevatio (fee	evation Surf.Area Pe (feet) (sɑ-ft) (f		Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
28.7	74	926	197.0	0.0	0	0	926
28.7	75	926	197.0	40.0	4	4	928
29.7	74	926	197.0	40.0	367	370	1,123
29.7	75	926	197.0	15.0	1	372	1,125
31.2	24	926	197.0	15.0	207	579	1,419
31.2	25	926	197.0	5.0	0	579	1,420
31.4	19	926	197.0	5.0	11	590	1,468
31.5	50	926	197.0	100.0	9	600	1,470
32.0	00	1,235	215.0	100.0	538	1,138	2,069
34.00 2,697		2,697	268.0	100.0	3,838	4,976	4,162
34.2	24	2,900	274.0	100.0	671	5,648	4,429
34.2	25	3,983	264.0	100.0	34	5,682	4,857
34.5	50	4,183	269.0	100.0	1,021	6,702	5,080
Device	Routing	Inve	rt Outle	et Device	S		
#1	Primary	28.7	5' 18.0 '	" Round	l Culvert		
	-		L= 3	6.0' CPI	P, projecting, no hea	dwall, Ke= 0.900	I
			Inlet	/ Outlet I	nvert= 28.75' / 28.55	5' S= 0.0056 '/' (Cc= 0.900
			n= 0.	.012, Flo	w Area= 1.77 sf		
#2	Device 1	l 28.7	5' 4.0''	Vert. Ori	ifice/Grate C= 0.60	0 Limited to wei	r flow at low heads
#3	#3 Device 1 34.10' 24.0" Horiz. Orifice/Grate C= 0.600						
Limited to weir flow at low heads							

Primary OutFlow Max=2.77 cfs @ 12.26 hrs HW=34.33' TW=32.88' (Dynamic Tailwater)

1=Culvert (Passes 2.77 cfs of 8.08 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.51 cfs @ 5.79 fps)

-3=Orifice/Grate (Weir Controls 2.26 cfs @ 1.57 fps)

Summary for Pond 2P: Infiltration System A

[80] Warning: Exceeded Pond DMH1 by 0.07' @ 25.45 hrs (1.74 cfs 1.048 af)

0.958 ac, 85.36% Impervious, Inflow Depth > 13.63" for 25-Year Storm event Inflow Area = 3.14 cfs @ 12.25 hrs, Volume= Inflow = 1.088 af Outflow 2.95 cfs @ 12.32 hrs, Volume= 1.002 af, Atten= 6%, Lag= 4.0 min = 0.18 cfs @ 12.32 hrs, Volume= Discarded = 0.522 af 2.76 cfs @ 12.32 hrs, Volume= 0.480 af Primary = Routed to Reach 5r : Channel through 1S

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.76' @ 12.32 hrs Surf.Area= 1,008 sf Storage= 4,288 cf

Plug-Flow detention time= 183.0 min calculated for 1.001 af (92% of inflow) Center-of-Mass det. time= 77.2 min (1,622.6 - 1,545.4)

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 61

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	28.00'	0 cf	24.00'W x 42.00'L x 5.67'H Field A
			5,715 cf Overall - 5,715 cf Embedded = 0 cf x 40.0% Voids
#2A	28.00'	4,500 cf	Shea Leaching Chamber 8x14x5.7x 9 Inside #1
			Inside= 84.0"W x 60.0"H => 38.46 sf x 13.00'L = 500.0 cf
			Outside= 96.0"W x 68.0"H => 45.36 sf x 14.00'L = 635.0 cf
			9 Chambers in 3 Rows
		4 500 cf	Total Available Storage

4,500 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	28.00'	1.450 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 26.91' Phase-In= 0.10'
#2	Primary	32.00'	12.0" Round Culvert X 2.00
			L= 8.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 32.00' / 31.90' S= 0.0125 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.18 cfs @ 12.32 hrs HW=32.76' (Free Discharge) **1=Exfiltration** (Controls 0.18 cfs)

Primary OutFlow Max=2.72 cfs @ 12.32 hrs HW=32.76' TW=26.11' (Dynamic Tailwater) **2=Culvert** (Barrel Controls 2.72 cfs @ 2.96 fps)

Summary for Pond 2PF: Bioretention Pond #1 Forebay

[43] Hint: Has no inflow (Outflow=Zero)

Volume	Invert	Avail	.Storage	Storage Description						
#1	32.25'		674 cf	Custom Stage Dat	d below (Recalc)					
Elevation	Sur	f.Area	Perim.	Inc.Store	Cum.Store	Wet.Area				
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft <u>)</u>				
32.25		41	83.0	0	0	41				
34.00		650	138.0	498	498	1,027				
34.25		756	143.0	176	674	1,145				

Summary for Pond 3P: Focal Point #1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=5)

Inflow Area	a =	0.140 ac, 8	39.23% Impe	ervious,	Inflow I	Depth =	6.58"	for 25-	Year Sto	orm event
Inflow	=	0.95 cfs @	12.09 hrs,	Volume	=	0.077	af			
Outflow	=	0.95 cfs @	12.09 hrs,	Volume	=	0.077	af, Atte	en= 0%,	Lag= 0.	2 min
Primary	=	0.95 cfs @	12.09 hrs,	Volume	=	0.077	af			
Routed	to Pond	4P : Infiltrat	ion System E	3						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Prepared by Jones & Beach Engineers Inc

HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Peak Elev= 29.63' @ 12.09 hrs Surf.Area= 105 sf Storage= 44 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.1 min (760.5 - 759.4)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription				
#1	26.7	' 5'	11 cf	5.00'W x 5	5.00'L x 2.25'H Fo	cal Point			
			00 C	56 cf Overall x 20.0% Voids					
<u>#2</u>	29.0	<u>)0'</u>	69 ct	Surface B	owi (Prismatic)Lis	sted below (Recalc)			
			80 cf	Total Avail	lable Storage				
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)				
29.0	00	25		0	0				
30.0	00	113		69	69				
Device	Routing	Invert	Outl	et Devices					
#1 #2 #3	Primary Device 1 Device 1	26.00' 26.75' 29.50'	12.0 L= 1 Inlet n= 0 100. 18.0 Limi	" Round C 3.0' CPP, / Outlet Inv .012, Flow 000 in/hr E " Horiz. Or ted to weir f	Culvert projecting, no head ert= 26.00' / 25.50 Area= 0.79 sf xfiltration over So ifice/Grate C= 0. low at low heads	dwall, Ke= 0.900 ' S= 0.0385 '/' Cc= 0.900 urface area Phase-In= 0.10' 600			

Primary OutFlow Max=0.93 cfs @ 12.09 hrs HW=29.63' TW=25.35' (Dynamic Tailwater) **1=Culvert** (Passes 0.93 cfs of 5.28 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.24 cfs)

-3=Orifice/Grate (Weir Controls 0.69 cfs @ 1.16 fps)

Summary for Pond 4P: Infiltration System B

Inflow Area	ı =	0.164	ac, 8	8.12% Imp	ervious,	Inflow	Depth =	6.64	4" for	25-Y	'ear Sto	rm event
Inflow	=	1.11 c	fs @	12.09 hrs,	Volume	=	0.091	af				
Outflow	=	0.07 c	fs @	13.59 hrs,	Volume	=	0.091	af, /	Atten=	94%,	Lag= 9	0.2 min
Discarded	=	0.07 c	fs @	13.59 hrs,	Volume	=	0.090	af				
Primary	=	0.00 c	fs @	13.59 hrs,	Volume	=	0.000	af				
Routed	to Reac	h 2rc :	Chanr	nel through	1S							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 26.84' @ 13.59 hrs Surf.Area= 672 sf Storage= 2,152 cf

Plug-Flow detention time= 398.0 min calculated for 0.091 af (100% of inflow) Center-of-Mass det. time= 397.7 min (1,155.7 - 757.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	23.25'	0 cf	16.00'W x 42.00'L x 4.67'H Field A
			3,138 cf Overall - 3,138 cf Embedded = 0 cf x 40.0% Voids
#2A	23.25'	2,400 cf	Shea Leaching Chamber 8x14x4.7x 6 Inside #1
			Inside= 84.0"W x 48.0"H => 30.77 sf x 13.00'L = 400.0 cf
			Outside= 96.0"W x 56.0"H => 37.36 sf x 14.00'L = 523.0 cf

Type III 24-hr 25-Year Storm Rainfall=7.18"Printed 11/4/2024Solutions LLCPage 63

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

6 Chambers in 2 Rows

2,400 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	23.25'	1.000 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 22.17' Phase-In= 0.10'
#2	Primary	26.80'	12.0" Round Culvert
			L= 5.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 26.80' / 26.70' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Discarded OutFlow Max=0.07 cfs @ 13.59 hrs HW=26.84' (Free Discharge) **1=Exfiltration** (Controls 0.07 cfs)

Primary OutFlow Max=0.00 cfs @ 13.59 hrs HW=26.84' TW=14.24' (Dynamic Tailwater) **2=Culvert** (Inlet Controls 0.00 cfs @ 0.51 fps)

Summary for Pond 5P: Lined Stone Drip Edge

[44] Hint: Outlet device #1 is below defined storage

Inflow Ar	ea =	0.023 ac, 81.4	48%	Impervious, Inflow Depth = 6.94" for 25-Year S	Storm event
Inflow	=	0.16 cfs @ 12	2.09	hrs, Volume= 0.013 af	
Outflow	=	0.16 cfs @ 12	2.09	hrs, Volume= 0.013 af, Atten= 0%, Lag=	0.4 min
Primary	=	0.16 cfs 🥘 12	2.09	hrs, Volume= 0.013 af	
Route	ed to Pond	4P : Infiltration	Sys	tem B	
Seconda	iry =	0.00 cfs @ 0	0.0	hrs, Volume= 0.000 af	
Route	ed to Reach	n 2Rc : Channe	el thr	ough 1S	
				C C	
Routing I	by Dyn-Sto	r-Ind method, 1	Time	e Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3	
Peak Ele	ev= 29.10' (@ 12.09 hrs S	Surf.A	Area= 0.003 ac Storage= 0.000 af	
Plug-Flov	w detentior	n time= (not cal	culat	ted: outflow precedes inflow)	
Center-o	f-Mass det	. time= 0.4 min	(74	3.0 - 742.6)	
Volume	Inver	t Avail.Stora	ige	Storage Description	
#1	29.01	' 0.001	af	2.00'W x 63.00'L x 1.01'H Prismatoid	
				0.003 af Overall x 40.0% Voids	
Device	Routing	Invert	Out	tlet Devices	
#1	Primary	29.00'	6.0	"Horiz. Orifice/Grate C= 0.600 Limited to weir f	low at low heads
#2	Secondary	y 30.00'	63.	0' long x 1.0' breadth Broad-Crested Rectangul	ar Weir
	-		Hea	ad (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.4	60 1.80 2.00
			2.5	0 3.00	
			Coe	ef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20	3.28 3.31
			3.3	0 3.31 3.32	

Primary OutFlow Max=0.16 cfs @ 12.09 hrs HW=29.10' TW=25.38' (Dynamic Tailwater) **1=Orifice/Grate** (Weir Controls 0.16 cfs @ 1.02 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=29.01' TW=14.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 6P: Detention Pond

 Inflow Area =
 0.306 ac, 42.66% Impervious, Inflow Depth = 5.31" for 25-Year Storm event

 Inflow =
 1.81 cfs @
 12.09 hrs, Volume=
 0.135 af

 Outflow =
 0.31 cfs @
 12.56 hrs, Volume=
 0.135 af, Atten= 83%, Lag= 28.4 min

 Primary =
 0.31 cfs @
 12.56 hrs, Volume=
 0.135 af

 Routed to Pond AP3 : Existing Pond
 0.135 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 36.53' @ 12.56 hrs Surf.Area= 3,054 sf Storage= 2,635 cf

Plug-Flow detention time= 154.3 min calculated for 0.135 af (100% of inflow) Center-of-Mass det. time= 152.0 min (948.9 - 796.9)

Volume	Invert	Avail.Stor	rage Storage	Description		
#1	35.50'	3,32	20 cf Custom	Stage Data (Pri	smatic)Listed below	w (Recalc)
Elevatio (fee	on Su et)	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
35.5 36.0 36.7	50 00 75	2,056 2,529 3,267	0 1,146 2,174	0 1,146 3,320		
Device	Routing	Invert	Outlet Devices	6		
#1	Primary	35.50'	12.0" Round L= 6.0' CPP, Inlet / Outlet In n= 0.012, Flo	Culvert square edge hea overt= 35.50' / 35 w Area= 0.79 sf	adwall, Ke= 0.500 5.40' S= 0.0167 '/'	Cc= 0.900
#2 #3	Device 1 Primary	35.50' 36.50'	3.0" Vert. Ori 6.0' long + 3 . Head (feet) 0 2.50 3.00 3.5 Coef. (English 2.68 2.72 2.7	fice/Grate C= 0 0 '/ SideZ x 4.0 .20 0.40 0.60 0 50 4.00 4.50 5.0) 2.38 2.54 2.6 3 2.76 2.79 2.8	.600 Limited to we ' breadth Broad-C .80 1.00 1.20 1.4)0 5.50 9 2.68 2.67 2.67 38 3.07 3.32	eir flow at low heads Frested Rectangular Weir 0 1.60 1.80 2.00 2.65 2.66 2.66

Primary OutFlow Max=0.31 cfs @ 12.56 hrs HW=36.53' TW=33.58' (Dynamic Tailwater)

-1=Culvert (Passes 0.23 cfs of 2.46 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.23 cfs @ 4.59 fps)

-3=Broad-Crested Rectangular Weir (Weir Controls 0.09 cfs @ 0.43 fps)

Summary for Pond 7P: Bioretention Pond #2

Inflow Area	a =	0.193 ac, 6	7.19% Imp	ervious,	Inflow	Depth =	6.10)" for	25-Y	ear Storm	event
Inflow	=	1.26 cfs @	12.09 hrs,	Volume	=	0.098	af				
Outflow	=	0.72 cfs @	12.19 hrs,	Volume	=	0.098	af, A	Atten=	43%,	Lag= 6.3	min
Primary	=	0.72 cfs @	12.19 hrs,	Volume	=	0.098	af				
Routed	to Pond	AP3 : Existir	ng Pond								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.85' @ 12.21 hrs Surf.Area= 608 sf Storage= 507 cf

Plug-Flow detention time= 17.9 min calculated for 0.098 af (100% of inflow) Center-of-Mass det. time= 17.0 min (791.9 - 774.8)

Volume	Inve	rt Avail.S	torage	Storage	Description		
#1	31.74	4'	983 cf	Custom	Stage Data (Irreg	ular)Listed below (F	Recalc)
Elevatio (fee	n S	Surf.Area (sq-ft)	Perim. (feet)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
31.7 31.7 32.7 32.7 34.2 34.2 34.4 34.5 35.0 35.5	24 25 24 25 29 50 50 50	490 490 490 490 490 490 490 490 664 853	111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 121.0 130.0	0.0 40.0 15.0 15.0 5.0 5.0 100.0 100.0 100.0	0 2 194 1 110 0 6 5 287 378	0 2 196 197 306 306 312 317 605 983	490 491 601 602 768 769 795 795 796 990 1,180
Device	Routing	Inve	rt Outle	et Devices	6		
#1 #2 #3	Primary Device 1 Device 1	31.75 31.75 35.20	5' 12.0 L= 8 Inlet n= 0 5' 4.0")' 18.0 Limit	" Round .0' CPP, / Outlet Ir .012, Flor Vert. Orit " Horiz. C ted to wei	Culvert projecting, no head overt= 31.75' / 31.60 w Area= 0.79 sf fice/Grate C= 0.60 Drifice/Grate C= 0 r flow at low heads	dwall, Ke= 0.900 0' S= 0.0187 '/' C 00 Limited to weir 0.600	Cc= 0.900 flow at low heads

Primary OutFlow Max=0.72 cfs @ 12.19 hrs HW=34.84' TW=31.50' (Dynamic Tailwater)

1=Culvert (Passes 0.72 cfs of 4.80 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.72 cfs @ 8.23 fps)

Summary for Pond 8P: Bioretention Pond #3

Inflow Area =0.478 ac, 79.61% Impervious, Inflow Depth =6.35"for 25-Year Storm eventInflow =3.19 cfs @12.09 hrs, Volume=0.253 afOutflow =1.31 cfs @12.31 hrs, Volume=0.253 af, Atten= 59%, Lag= 13.3 minPrimary =1.31 cfs @12.31 hrs, Volume=0.253 afRouted to Pond 14P : Chamber System D0.253 af0.253 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.58' @ 12.31 hrs Surf.Area= 1,358 sf Storage= 2,029 cf

Plug-Flow detention time= 13.4 min calculated for 0.253 af (100% of inflow) Center-of-Mass det. time= 13.3 min (781.5 - 768.1)

Volume	Inve	ert Avai	I.Storage	Storage Description						
#1	27.2	24'	2,651 cf	Custom	n Stage Data (Irregu	u lar) Listed below (Recalc)			
Elevatio	on	Surf.Area	Perim.	Voids	Inc.Store	Cum.Store	Wet.Area			
07 (51) 24	(34-11)	<u>96 0</u>	(/0)			(34-11)			
27.2	24 25	238	86.0	40.0	1	1	230			
28.2	24	238	86.0	40.0	94	95	324			
28.2	25	238	86.0	15.0	0	96	325			
29.7	74	238	86.0	15.0	53	149	453			
29.7	75	238	86.0	5.0	0	149	454			
29.9	99	238	86.0	5.0	3	152	475			
30.0	00	238	86.0	100.0	2	154	475			
32.0	00	1,037	181.0	100.0	1,181	1,335	2,511			
33.0	00	1,616	202.0	100.0	1,316	2,651	3,180			
Device	Routing	Inv	vert Outle	et Device	s					
#1	Primary	27	.25' 12.0	" Round	l Culvert					
			L= 7	.0' CPP	, projecting, no head	dwall, Ke= 0.900				
			Inlet	/ Outlet I	nvert= 27.25' / 27.00	0' S= 0.0357 '/' (Cc= 0.900			
			n= 0	.012, Flo	ow Area= 0.79 sf					
#2	Device 1	ce 1 27.25' 4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads								
#3	3 Device 1 32.50' 18.0" Horiz. Orifice/Grate C= 0.600									
			Limit	ted to we	ir flow at low heads					

Primary OutFlow Max=1.29 cfs @ 12.31 hrs HW=32.58' TW=27.43' (Dynamic Tailwater) -1=Culvert (Passes 1.29 cfs of 6.56 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.95 cfs @ 10.92 fps)

-3=Orifice/Grate (Weir Controls 0.34 cfs @ 0.92 fps)

Summary for Pond 10P: Focal Point #2

[90] Warning: Qout>Qin may require smaller dt or Finer Routing [87] Warning: Oscillations may require smaller dt or Finer Routing (severity=13)

Inflow Area = 0.377 ac, 79.03% Impervious, Inflow Depth = 6.35" for 25-Year Storm event Inflow = 2.52 cfs @ 12.09 hrs, Volume= 0.199 af Outflow = 2.53 cfs @ 12.09 hrs, Volume= 0.199 af, Atten= 0%, Lag= 0.2 min 2.53 cfs @ 12.09 hrs, Volume= 0.199 af Primarv = Routed to Pond DMH2 : Drain Manhole 2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Peak Elev= 38.27' @ 12.09 hrs Surf.Area= 179 sf Storage= 73 cf

Plug-Flow detention time= 0.9 min calculated for 0.199 af (100% of inflow) Center-of-Mass det. time= 0.9 min (769.1 - 768.1)

Volume	Inve	ert Avail.Sto	orage	Storage De	escription	
#1	35.5	50'	27 cf	4.00'W x 1	5.00'L x 2.25'H F	ocal Point
				135 cf Ove	rall x 20.0% Void	ls
#2	37.7	75'	77 cf	Surface B	owl (Prismatic)L	sted below (Recalc)
		1	04 cf	Total Avail	able Storage	
Elovatio	n	Surf Area	Inc	Store	Cum Store	
	ЛI .+\	Sull.Alea	IIIC (oubid	.Sille	(oubic foot)	
(166		(54-11)	(Cubic			
37.7	75	60		0	0	
38.0	00	86		18	18	
38.5	50	148		59	77	
Device	Routing	Invert	Outle	et Devices		
#1	Primary	34.75'	12.0	" Round C	ulvert	
	,		L= 1	0.0' CPP.	proiecting, no hea	dwall, Ke= 0.900
			Inlet	/ Outlet Inv	ert= 34 75' / 34 50	S = 0.0250 V Cc= 0.900
			n = 0		$\Lambda rea = 0.70 \text{ ef}$, 6 6.6266 , 66 6.666
#0	Davias 1	25 501	400	000 in/hr E	Alea – 0.73 Si	urface erec. Dhase in- 0.10
#Z	Device I	35.50	100.		xintration over 5	ana area Phase-in- 0.10
#3	Device 1	38.00	18.0	" Horiz. Or	fice/Grate C= 0	.600
			Limit	ted to weir f	ow at low heads	

Primary OutFlow Max=2.47 cfs @ 12.09 hrs HW=38.26' TW=35.24' (Dynamic Tailwater)

-1=Culvert (Passes 2.47 cfs of 5.18 cfs potential flow)

2=Exfiltration (Exfiltration Controls 0.41 cfs)

-3=Orifice/Grate (Weir Controls 2.06 cfs @ 1.67 fps)

Summary for Pond 11P: Chamber System C

[80] Warning: Exceeded Pond 12P by 0.90' @ 24.15 hrs (2.20 cfs 0.228 af)

- [80] Warning: Exceeded Pond DMH2 by 0.03' @ 24.35 hrs (0.00 cfs 0.000 af)
- [80] Warning: Exceeded Pond DMH4 by 1.66' @ 21.05 hrs (4.74 cfs 1.089 af)

Inflow Area	a =	0.820 ac, 8	6.54% Impe	ervious,	Inflow	Depth =	6.5	57" for	25-Y	'ear Sto	rm event
Inflow	=	5.56 cfs @	12.09 hrs,	Volume	=	0.449	af				
Outflow	=	0.17 cfs @	15.88 hrs,	Volume	=	0.398	af,	Atten=	97%,	Lag= 2	27.6 min
Primary	=	0.17 cfs @	15.88 hrs,	Volume	=	0.398	af				
Routed	to Reac	h 2Ra : Char	nel through	า 1S							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.88' @ 15.88 hrs Surf.Area= 5,824 sf Storage= 13,693 cf

Plug-Flow detention time= 865.1 min calculated for 0.398 af (89% of inflow) Center-of-Mass det. time= 812.3 min (1,571.8 - 759.6)

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 68

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	32.25'	0 cf	32.00'W x 182.00'L x 4.67'H Field A
			27,198 cf Overall - 27,198 cf Embedded = 0 cf x 40.0% Voids
#2A	32.25'	20,800 cf	Shea Leaching Chamber 8x14x4.7x 52 Inside #1
			Inside= 84.0"W x 48.0"H => 30.77 sf x 13.00'L = 400.0 cf
			Outside= 96.0"W x 56.0"H => 37.36 sf x 14.00'L = 523.0 cf
			52 Chambers in 4 Rows
		20,900 of	Total Available Storage

20,800 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices					
#1	Primary	31.58'	12.0" Round Culvert					
	-		L= 20.0' CPP, projecting, no headwall, Ke= 0.900					
			Inlet / Outlet Invert= 31.58' / 31.40' S= 0.0090 '/' Cc= 0.900					
			n= 0.012, Flow Area= 0.79 sf					
#2	Device 1	32.25'	2.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads					
#3	Device 2	32.25'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads					

Primary OutFlow Max=0.17 cfs @ 15.88 hrs HW=34.88' TW=24.29' (Dynamic Tailwater)

1=Culvert (Passes 0.17 cfs of 5.00 cfs potential flow)

-2=Orifice/Grate (Orifice Controls 0.17 cfs @ 7.69 fps)

3=Orifice/Grate (Passes 0.17 cfs of 0.66 cfs potential flow)

Summary for Pond 12P: Jellyfish #1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=28)

Inflow Area	a =	0.232 ac, 9	2.02% Imp	ervious,	Inflow	Depth =	6.70"	for 25-	Year Storr	n event
Inflow	=	1.58 cfs @	12.09 hrs,	Volume	=	0.130	af			
Outflow	=	1.58 cfs @	12.09 hrs,	Volume	=	0.130	af, Att	en= 0%,	Lag= 0.0	min
Primary	=	1.58 cfs @	12.09 hrs,	Volume	=	0.130	af			
Routed	to Pond	11P : Cham	ber System	С						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.88' @ 15.88 hrs Flood Elev= 36.90'

Device	Routing	Invert	Outlet Devices							
#1	Primary	33.55'	15.0" Round Culvert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 33.55' / 33.40' S= 0.0075 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf							
Drimon	Drimony OutElow Max-1.54 of (200) bro (100) -24.27' (100) -23.72' (100) -20.00'									

Primary OutFlow Max=1.54 cfs @ 12.09 hrs HW=34.27' TW=33.73' (Dynamic Tailwater) -1=Culvert (Barrel Controls 1.54 cfs @ 3.01 fps)

Summary for Pond 13P: Lined Stone Drip Edge

Inflow Ar	ea =	0.020 ac, 88.7	'9% Impervious, Inflow Depth = 6.94" for 25-Year Storm event
Inflow	=	0.14 cfs @ 12	.09 hrs, Volume= 0.012 af
Outflow	=	0.14 cfs @ 12	.09 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.3 min
Primary	=	0.14 cfs @ 12	.09 hrs, Volume= 0.012 af
Route	ed to Pond	7P : Bioretentio	on Pond #2
Seconda	iry =	0.00 cfs @ 0	.00 hrs, Volume= 0.000 af
Route	ed to Pond	AP3 : Existing	Pond
Routing	by Dyn-Sto	r-Ind method,	Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3
Peak Ele	ev= 35.09' (@ 12.09 hrs S	urf.Area= 0.002 ac Storage= 0.000 af
Plug-Flov	w detentior	n time= 1.7 min	calculated for 0.012 af (100% of inflow)
Center-o	f-Mass det	. time= 1.0 min	(743.6 - 742.6)
Volume	Inver	t Avail Stora	ae Storage Description
# I	35.00	0.001	al 2.00° W X 48.00 [°] L X 1.01 [°] H Prismatold
			0.002 al Overall X 40.0% Volds
Device	Routina	Invert	Outlet Devices
#1	Primary	35.00'	6 0" Horiz Orifice/Grate C= 0.600 Limited to weir flow at low heads
#1 #2	Secondary	36.00'	63 0' long v 1 0' broadth Broad Crosted Poctangular Woir
#2	Secondar	y 50.00	Head (feet) $0.20, 0.40, 0.60, 0.80, 1.00, 1.20, 1.40, 1.60, 1.80, 2.00$
			2.50, 3.00
			2.00 3.00 Coof (English) 2.60 2.72 2.75 2.95 2.09 2.09 2.00 2.20 2.21
			2 20 2 21 2 20
			0.00 0.01 0.02
Drimora	OutFlow	Max-0 14 of a	12.00 bre $H/M=25.00' T/M=24.62' (Dynamic Tailwater)$
		$\sqrt{14}$	$y_1 z_0 = 115 \text{mv} = 33.09 100 = 34.03 (Dynamic Tailwaler)$

T—1=Orifice/Grate (Weir Controls 0.14 cfs @ 0.98 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=35.00' TW=26.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond 14P: Chamber System D

Inflow Area	a =	0.478 ac, 7	9.61% Impe	ervious,	Inflow	Depth =	6.35"	for 25-Y	ear Storm event
Inflow	=	1.31 cfs @	12.31 hrs,	Volume	=	0.253	af		
Outflow	=	0.62 cfs @	13.45 hrs,	Volume	=	0.253	af, Atte	en= 53%,	Lag= 68.4 min
Primary	=	0.62 cfs @	13.45 hrs,	Volume	=	0.253	af		-
Routed to Reach 2Rc : Channel through 1S									

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 28.34' @ 13.45 hrs Surf.Area= 1,344 sf Storage= 2,809 cf

Plug-Flow detention time= 60.4 min calculated for 0.253 af (100% of inflow) Center-of-Mass det. time= 59.8 min (841.3 - 781.5)

Type III 24-hr 25-Year Storm Rainfall=7.18" Printed 11/4/2024

Page 70

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	26.00'	0 cf	24.00'W x 56.00'L x 3.67'H Field A
			4,932 cf Overall - 4,932 cf Embedded = 0 cf x 40.0% Voids
#2A	26.00'	3,600 cf	Shea Leaching Chamber 8x14x3.7x 12 Inside #1
			Inside= 84.0"W x 36.0"H => 23.08 sf x 13.00'L = 300.0 cf
			Outside= 96.0"W x 44.0"H => 29.36 sf x 14.00'L = 411.0 cf
			12 Chambers in 3 Rows
		3 600 cf	Total Available Storage

3,600 cf I otal Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices						
#1	Primary	25.33'	12.0" Round Culvert						
	-		L= 16.0' CPP, projecting, no headwall, Ke= 0.900						
			Inlet / Outlet Invert= 25.33' / 25.10' S= 0.0144 '/' Cc= 0.900						
			n= 0.012, Flow Area= 0.79 sf						
#2	Device 1	26.00'	4.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads						

Primary OutFlow Max=0.62 cfs @ 13.45 hrs HW=28.34' TW=14.24' (Dynamic Tailwater) 1=Culvert (Passes 0.62 cfs of 4.73 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.62 cfs @ 7.10 fps)

Summary for Pond 15P: Jellyfish #2

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=45)

Inflow Area	ı =	0.211 ac, 9	93.91% Impe	ervious,	Inflow I	Depth =	6.82"	for 25	-Year S	torm event
Inflow	=	1.45 cfs @	12.09 hrs,	Volume	=	0.120	af			
Outflow	=	1.45 cfs @	12.09 hrs,	Volume	=	0.120	af, At	ten= 0%,	Lag= ().0 min
Primary	=	1.45 cfs @	12.09 hrs,	Volume	=	0.120	af		•	
Routed	to Pond	DMH4 : Dra	in Manhole	4						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.88' @ 15.88 hrs Flood Elev= 36.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	33.25'	15.0" Round Culvert L= 16.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 33.25' / 33.10' S= 0.0094 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=1.42 cfs @ 12.09 hrs HW=34.08' TW=33.90' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 1.42 cfs @ 1.64 fps)

Summary for Pond 16P: Eco Paver

Inflow An Inflow Outflow Primary Route Seconda Route	rea = (= 0 = 0 = 0 ed to Reach ary = 0 ed to Reach	077 ac,100.00% Impervious, Inflow Depth = 6.94" for 25-Year Storm event 3 cfs @ 12.09 hrs, Volume= 0.044 af 4 cfs @ 12.14 hrs, Volume= 0.044 af, Atten= 17%, Lag= 3.5 min 4 cfs @ 12.14 hrs, Volume= 0.044 af 7 cfs @ 12.14 hrs, Volume= 0.044 af 8 cfs @ 12.14 hrs, Volume= 0.044 af 9 cfs @ 0.00 hrs, Volume= 0.000 af 8 cfs @ 0.00 hrs, Volume= 0.000 af					
Routing Peak Ele	by Dyn-Stor ev= 28.99' @	nd method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 2.14 hrs Surf.Area= 576 sf Storage= 137 cf					
Plug-Flo Center-c	w detention of-Mass det.	ne= 13.7 min calculated for 0.044 af (100% of inflow) ne= 14.0 min(756.6 - 742.6)					
Volume	Invert	Avail.Storage Storage Description					
#1	28.40'	233 cf 6.00'W x 96.00'L x 1.01'H Prismatoid 582 cf Overall x 40.0% Voids					
<u>Device</u> #1	Brimany	28.40' 60" Bound Culvert					
#1 #2 #3	Device 1 Secondary	 28.40 6.0 Round Cuivert L= 20.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 28.40' / 28.00' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.20 sf 28.40' 6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads 29.40' 96.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32 	3				
Primary 1=Cu 2=	OutFlow M Ivert (Inlet (Orifice/Gra	<=0.43 cfs @ 12.14 hrs HW=28.99' TW=0.00' (Dynamic Tailwater) ontrols 0.43 cfs @ 2.21 fps) (Passes 0.43 cfs of 0.55 cfs potential flow)					
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=28.40' TW=26.00' (Dynamic Tailwater)							

Summary for Pond AP3: Existing Pond

15" CMP culvert inlet is buried. Contractor to uncover culvert inlet.

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=39)

Inflow Area = 6.995 ac, 53.69% Impervious, Inflow Depth = 5.54" for 25-Year Storm event Inflow = 25.40 cfs @ 12.35 hrs, Volume= 3.231 af Outflow = 7.39 cfs @ 12.96 hrs, Volume= 3.231 af, Atten= 71%, Lag= 36.4 min Primary = 7.39 cfs @ 12.96 hrs, Volume= 3.231 af Routed to Reach AP2 : Analysis Point 2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3
Peak Elev= 33.98' @ 12.96 hrs Surf.Area= 19,533 sf Storage= 36,312 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 31.5 min (847.0 - 815.5)

Volume	Invert	Avail	.Storage	Storage Description	on		
#1	26.00'	10	04,430 cf	Custom Stage Da	ata (Irregular)List	ted below (Recalc)	
Elevation (feet)	Su	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
26.00		1	1.0	0	0	1	
28.00		37	24.0	29	29	53	
30.00		2,236	218.0	1,707	1,736	3,797	
32.00		7,294	444.0	9,046	10,782	15,721	
34.00		19,719	933.0	26,004	36,786	69,323	
35.50		43,192	1,107.0	46,047	82,834	97,611	
36.00		43,192	1,107.0	21,596	104,430	98,164	
Device Ro	uting	١n	vert Outle	et Devices			
#1 Pri	mary	26	.00' 15.0	" Round Culvert			
	L= 156.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 26.00' / 24.09' S= 0.0122 '/' Cc= 0.900 n= 0.025_Corrugated metalElow Area= 1.23 sf						00

Primary OutFlow Max=7.39 cfs @ 12.96 hrs HW=33.98' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 7.39 cfs @ 6.02 fps)

Summary for Pond DMH1: Drain Manhole 1

[80] Warning: Exceeded Pond 1P by 0.82' @ 26.50 hrs (0.38 cfs 0.733 af)

Inflow Area =0.881 ac, 84.08% Impervious, Inflow Depth > 14.22" for 25-Year Storm eventInflow =2.80 cfs @12.26 hrs, Volume=1.044 afOutflow =2.80 cfs @12.26 hrs, Volume=1.044 af, Atten= 0%, Lag= 0.0 minPrimary =2.80 cfs @12.26 hrs, Volume=1.044 afRouted to Pond 2P : Infiltration System A1.044 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 32.92' @ 12.30 hrs Flood Elev= 35.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	28.45'	18.0" Round Culvert L= 52.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 28.45' / 28.10' S= 0.0067 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=2.78 cfs @ 12.26 hrs HW=32.88' TW=32.71' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.78 cfs @ 1.57 fps)

Summary for Pond DMH2: Drain Manhole 2

 Inflow Area =
 0.377 ac, 79.03% Impervious, Inflow Depth = 6.35" for 25-Year Storm event

 Inflow =
 2.53 cfs @
 12.09 hrs, Volume=
 0.199 af

 Outflow =
 2.53 cfs @
 12.09 hrs, Volume=
 0.199 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.53 cfs @
 12.09 hrs, Volume=
 0.199 af

 Routed to Pond 11P : Chamber System C
 0.199 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 35.25' @ 12.09 hrs Flood Elev= 38.70'

Device	Routing	Invert	Outlet Devices
#1	Primary	34.40'	18.0" Round Culvert L= 14.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.40' / 34.20' S= 0.0143 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=2.47 cfs @ 12.09 hrs HW=35.24' TW=33.75' (Dynamic Tailwater) **1=Culvert** (Barrel Controls 2.47 cfs @ 3.50 fps)

Summary for Pond DMH4: Drain Manhole 4

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=6) [80] Warning: Exceeded Pond 15P by 1.19' @ 24.15 hrs (3.43 cfs 0.398 af)

Inflow Area =0.211 ac, 93.91% Impervious, Inflow Depth =6.82"for 25-Year Storm eventInflow =1.45 cfs @12.09 hrs, Volume=0.120 afOutflow =1.45 cfs @12.09 hrs, Volume=0.120 af, Atten= 0%, Lag= 0.0 minPrimary =1.45 cfs @12.09 hrs, Volume=0.120 afRouted to Pond 11P : Chamber System C0.120 af0.120 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 34.88' @ 15.88 hrs Flood Elev= 37.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	33.00'	15.0" Round Culvert L= 23.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 33.00' / 32.80' S= 0.0087 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=1.42 cfs @ 12.09 hrs HW=33.90' TW=33.73' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.42 cfs @ 2.11 fps)

24029 PR CONDITION	Type III 24-hr	50-Year Storm Rai	nfall=8.61"
Prepared by Jones & Beach Engineers Inc		Printed	11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software	Solutions LLC		Page 74

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Subcatchment1S	Runoff Area=210,582 sf 31.09% Impervious Runoff Depth=6.20" Flow Length=588' Tc=13.2 min CN=80 Runoff=27.16 cfs 2.497 af
Subcatchment2S: Subcatchment2S	Runoff Area=16,051 sf 68.26% Impervious Runoff Depth=7.41" Flow Length=125' Tc=10.9 min CN=90 Runoff=2.52 cfs 0.227 af
Subcatchment3S: Subcatchment3S	Runoff Area=282,964 sf 53.81% Impervious Runoff Depth=6.92" Flow Length=604' Tc=26.3 min CN=86 Runoff=30.41 cfs 3.748 af
Subcatchment4S: Subcatchment4S	Runoff Area=2,236 sf 100.00% Impervious Runoff Depth=8.37" Tc=6.0 min CN=98 Runoff=0.42 cfs 0.036 af
Subcatchment5S: Subcatchment5S	Runoff Area=310 sf 0.00% Impervious Runoff Depth=5.47" Tc=6.0 min CN=74 Runoff=0.04 cfs 0.003 af
Subcatchment6S: Subcatchment6S	Runoff Area=8,122 sf 55.43% Impervious Runoff Depth=7.04" Flow Length=149' Tc=12.0 min CN=87 Runoff=1.20 cfs 0.109 af
Subcatchment7S: Subcatchment7S	Runoff Area=24,490 sf 13.93% Impervious Runoff Depth=5.60" Flow Length=212' Tc=15.9 min CN=75 Runoff=2.71 cfs 0.262 af
Subcatchment8S: Subcatchment8S	Runoff Area=38,380 sf 84.08% Impervious Runoff Depth=7.89" Tc=6.0 min CN=94 Runoff=7.16 cfs 0.579 af
Subcatchment9S: Subcatchment9S	Runoff Area=6,117 sf 89.23% Impervious Runoff Depth=8.01" Tc=6.0 min CN=95 Runoff=1.15 cfs 0.094 af
Subcatchment10S: Subcatchment10S	Runoff Area=1,015 sf 81.48% Impervious Runoff Depth=8.37" Tc=6.0 min CN=98 Runoff=0.19 cfs 0.016 af
Subcatchment11S: Subcatchment11S	Runoff Area=13,311 sf 42.66% Impervious Runoff Depth=6.68" Tc=6.0 min CN=84 Runoff=2.26 cfs 0.170 af
Subcatchment12S: Subcatchment12S	Runoff Area=7,530 sf 64.63% Impervious Runoff Depth=7.41" Tc=6.0 min CN=90 Runoff=1.36 cfs 0.107 af
Subcatchment13S: Subcatchment13S	Runoff Area=20,822 sf 79.61% Impervious Runoff Depth=7.77" Tc=6.0 min CN=93 Runoff=3.86 cfs 0.309 af
Subcatchment14S: Subcatchment14S	Runoff Area=3,343 sf 100.00% Impervious Runoff Depth=8.37" Tc=6.0 min CN=98 Runoff=0.63 cfs 0.054 af
Subcatchment15S: Subcatchment15S	Runoff Area=16,422 sf 79.03% Impervious Runoff Depth=7.77" Tc=6.0 min CN=93 Runoff=3.05 cfs 0.244 af
Subcatchment16S: Subcatchment16S	Runoff Area=10,113 sf 92.02% Impervious Runoff Depth=8.13" Tc=6.0 min CN=96 Runoff=1.91 cfs 0.157 af

24029 PR CONDITION	Type III 24-hr 50-Year Storm Rainfall=8.61
Prepared by Jones & Beach Engineers I	nc Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 Hydro	oCAD Software Solutions LLC Page 75
Subcatchment17S: Subcatchment17S	Runoff Area=892 sf 88.79% Impervious Runoff Depth=8.37" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
Subcatchment18S: Subcatchment18S	Runoff Area=23,376 sf 30.41% Impervious Runoff Depth=6.32" Tc=10.0 min CN=81 Runoff=3.36 cfs 0.283 af
Subcatchment19S: Subcatchment19S	Runoff Area=9,205 sf 93.91% Impervious Runoff Depth=8.25" Tc=6.0 min CN=97 Runoff=1.74 cfs 0.145 af
Reach 2Ra: Channel through 1S A n=0.040 L=136.0	Avg. Flow Depth=0.64' Max Vel=3.55 fps Inflow=9.04 cfs 4.731 af 0' S=0.0294 '/' Capacity=1,586.21 cfs Outflow=9.01 cfs 4.731 af
Reach 2Rb: Channel through 1S Av n=0.040 L=153.0	vg. Flow Depth=0.25' Max Vel=2.79 fps Inflow=14.49 cfs 5.306 af S=0.0392 '/' Capacity=4,170.50 cfs Outflow=14.25 cfs 5.306 af
Reach 2Rc: Channel through 1S Avn n=0.040 L=303.0	vg. Flow Depth=0.38' Max Vel=2.43 fps Inflow=20.18 cfs 6.173 af S=0.0165 '/' Capacity=2,705.34 cfs Outflow=19.79 cfs 6.171 af
Reach 3R: 15" HDPE Culvert A 15.0" Round Pipe n=0.012 L=	Avg. Flow Depth=0.65' Max Vel=4.21 fps Inflow=2.71 cfs 0.262 af =47.0' S=0.0053 '/' Capacity=5.10 cfs Outflow=2.71 cfs 0.262 af
Reach 4R: Flow through 1S n=0.030 L=20	Avg. Flow Depth=0.47' Max Vel=2.39 fps Inflow=2.71 cfs 0.262 af 00.0' S=0.0125 '/' Capacity=14.80 cfs Outflow=2.68 cfs 0.262 af
Reach 5R: Channel through 1S A n=0.040 L=77	Avg. Flow Depth=0.17' Max Vel=2.99 fps Inflow=5.60 cfs 0.573 af 7.0' S=0.0779 '/' Capacity=498.13 cfs Outflow=5.48 cfs 0.572 af
Reach 6R: SEE NOTES	Inflow=0.51 cfs 0.054 af Outflow=0.51 cfs 0.054 af
Reach 7R: 15" HDPE Culvert Av 15.0" Round Pipe n=0.012 L=2	/g. Flow Depth=0.43' Max Vel=15.03 fps Inflow=5.65 cfs 0.545 af 20.0' S=0.1000 '/' Capacity=22.13 cfs Outflow=5.65 cfs 0.545 af
Reach AP1: Analysis Point 1	Inflow=45.92 cfs 8.668 af Outflow=45.92 cfs 8.668 af
Reach AP2: Analysis Point 2	Inflow=8.89 cfs 4.267 af Outflow=8.89 cfs 4.267 af
Reach AP4: Analysis Point 4	Inflow=0.42 cfs 0.036 af Outflow=0.42 cfs 0.036 af
Reach AP5: Analysis Point 5	Inflow=0.04 cfs 0.003 af Outflow=0.04 cfs 0.003 af
Reach AP6: Analysis Point 6	Inflow=1.20 cfs 0.109 af Outflow=1.20 cfs 0.109 af
Pond 1P: Bioretention Pond #1	Peak Elev=34.46' Storage=6,552 cf Inflow=7.16 cfs 0.579 af Outflow=5.01 cfs 0.566 af

24029 PR CONDITION Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroC/	Type III 24-hr50-Year Storm Rainfall=8.61"Printed11/4/2024AD Software Solutions LLCPage 76
Pond 2P: Infiltration System A Discarded=0.20 cfs (Peak Elev=33.38' Storage=4,500 cf Inflow=5.51 cfs 1.189 af 0.532 af Primary=5.60 cfs 0.573 af Outflow=5.80 cfs 1.104 af
Pond 2PF: Bioretention Pond #1 Forebay	Peak Elev=0.00' Storage=0 cf
Pond 3P: Focal Point #1	Peak Elev=29.65' Storage=46 cf Inflow=1.15 cfs 0.094 af Outflow=1.15 cfs 0.094 af
Pond 4P: Infiltration System B Discarded=0.07 cfs (Peak Elev=27.09' Storage=2,305 cf Inflow=1.35 cfs 0.110 af 0.097 af Primary=0.28 cfs 0.013 af Outflow=0.35 cfs 0.110 af
Pond 5P: Lined Stone Drip Edge Primary=0.19 cfs 0.0	Peak Elev=29.11' Storage=0.000 af Inflow=0.19 cfs 0.016 af 16 af Secondary=0.00 cfs 0.000 af Outflow=0.19 cfs 0.016 af
Pond 6P: Detention Pond	Peak Elev=36.62' Storage=2,888 cf Inflow=2.26 cfs 0.170 af Outflow=0.82 cfs 0.170 af
Pond 7P: Bioretention Pond #2	Peak Elev=35.16' Storage=714 cf Inflow=1.53 cfs 0.121 af Outflow=0.74 cfs 0.121 af
Pond 8P: Bioretention Pond #3	Peak Elev=32.71' Storage=2,213 cf Inflow=3.86 cfs 0.309 af Outflow=2.46 cfs 0.309 af
Pond 10P: Focal Point #2	Peak Elev=38.31' Storage=78 cf Inflow=3.05 cfs 0.244 af Outflow=3.05 cfs 0.244 af
Pond 11P: Chamber System C	Peak Elev=35.51' Storage=16,928 cf Inflow=6.70 cfs 0.547 af Outflow=0.19 cfs 0.464 af
Pond 12P: Jellyfish#1 15.0" Round Cu	Peak Elev=35.51' Inflow=1.91 cfs 0.157 af ulvert n=0.012 L=20.0' S=0.0075 '/' Outflow=1.91 cfs 0.157 af
Pond 13P: Lined Stone Drip Edge Primary=0.17 cfs 0.0	Peak Elev=35.16' Storage=0.000 af Inflow=0.17 cfs 0.014 af 14 af Secondary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.014 af
Pond 14P: Chamber System D	Peak Elev=28.79' Storage=3,352 cf Inflow=2.46 cfs 0.309 af Outflow=0.68 cfs 0.309 af
Pond 15P: Jellyfish#2 15.0" Round Cu	Peak Elev=35.51' Inflow=1.74 cfs 0.145 af ulvert n=0.012 L=16.0' S=0.0094 '/' Outflow=1.74 cfs 0.145 af
Pond 16P: Eco Paver Primary=0.51 cfs 0.03	Peak Elev=29.12' Storage=165 cf Inflow=0.63 cfs 0.054 af 54 af Secondary=0.00 cfs 0.000 af Outflow=0.51 cfs 0.054 af
Pond AP3: Existing Pond 15.0" Round Cul	Peak Elev=34.61' Storage=51,274 cf Inflow=31.81 cfs 4.039 af Ivert n=0.025 L=156.0' S=0.0122 '/' Outflow=7.65 cfs 4.040 af
Pond DMH1: Drain Manhole 1 18.0" Round Cu	Peak Elev=33.90' Inflow=5.01 cfs 1.136 af ulvert n=0.012 L=52.0' S=0.0067 '/' Outflow=5.01 cfs 1.136 af

24029 PR CONDITION	Type III 24-hr 50-Year Storm Rainfall=8.61"
Prepared by Jones & Beach Engineers Inc	Printed 11/4/2024
HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD	Software Solutions LLC Page 77
Pond DMH2: Drain Manhole 2 18.0" Round Culve	Peak Elev=35.51' Inflow=3.05 cfs 0.244 af ert n=0.012 L=14.0' S=0.0143 '/' Outflow=3.05 cfs 0.244 af
Pond DMH4: Drain Manhole 4 15.0" Round Culve	Peak Elev=35.51' Inflow=1.74 cfs 0.145 af ert n=0.012 L=23.0' S=0.0087 '/' Outflow=1.74 cfs 0.145 af

Total Runoff Area = 15.961 acRunoff Volume = 9.056 afAverage Runoff Depth = 6.81"50.14% Pervious = 8.003 ac49.86% Impervious = 7.959 ac

APPENDIX III

Test Pit Logs

Cd 16-60"

GOVE ENVIRONMENTAL SERVICES, INC.

blocky-firm-5% Conc.

TEST PIT DATA

Project76 Portsmouth Ave, Exeter, NHClientGreen & Co.GES Project No. 2024047MM/DD/YY Staff07-2-2024Jan

2.5Y5/3

James Gove, CSS#004

Test Pit No	. 6001		Soils Series: Boxford	
ESHWT::	16"		Landscape: Forested	
Termination	n @ 60"		Slope: B	
Refusal:	No		Parent Material: Marine	
Obs. Water:	None		Hydrologic Soil Group:	С
Horizon	Color (Munsell)	Texture	Structu	re-Consistence-Redox
A 0-7"	10YR3/2	silt loam	granula	ar-friable-none
Bw 7-16"	10YR4/4	silt loam	granula	ar-friable-none

silty clay loam

Test Pit No.	6003	1	Soils Series: Boxford	
ESHWT::	18"]	Landscape: Forested	
Termination @	¢ 68"	1	Slope: B	
Refusal:	No]	Parent Material: Marine	
Obs. Water:	None]	Hydrologic Soil Group:	C
Horizon	Color (Munsell)	Texture	Structure	e-Consistence-Redox
A 0-7"	10YR3/2	silt loam	granular	-friable-none
Bw 7-18"	10YR4/4	silt loam	granular	-friable-none
Cd 18-68"	2.5Y5/3	silty clay loam	blocky-f	irm-5% Conc.

Test Pit No. ESHWT:: Termination (Refusal: Obs. Water:	6 5 @ 60 N N	007 " " o " one	Soils Serie Landscape Slope: C Parent Ma Hydrologi	es: Scitico e: Forested terial: Marine c Soil Group:	С
Horizon A 0-5" Cd 5-60"	Color (Munse 10YR3/2 2.5Y5/3	ell) Textur silt loa silty cl	e m ay loam	Structure blocky-f blocky-f	e-Consistence-Redox riable-none irm-5% Conc.
Test Pit No. ESHWT:: Termination (Refusal: Obs. Water:	6 10 @ 40 N N	010 0" 0" fo	Soils Serie Landscape Slope: B Parent Ma Hydrologi	es: Scitico e: Forested terial: Marine c Soil Group:	С
Horizon A 0-10" Cd 10-40"	Color (Munse 10YR3/2 2.5Y5/32	ell) Textur silt loa silty cl	e m ay loam	Structure granular blocky-f	e-Consistence-Redox -friable-none irm-5% Conc.
Test Pit No. ESHWT:: Termination (Refusal: Obs. Water:	60 20 @ 60 N N	016 6" 0" fo	Soils Serie Landscape Slope: B Parent Ma Hydrologi	es: Eldridge e: Forested terial: Marine c Soil Group:	С
Horizon A 0-9" Bw1 9-26" Bw1 26-31 Cd 31-60"	Color (Munse 10YR3/2 10YR5/8 10YR5/8 2.5Y5/3	ell) Textur sand sand sand silty cl	e ay loam	Structure granular massive- massive- blocky-f	e-Consistence-Redox -friable-none -friable-none -friable-10% Conc. irm-10% Conc.
Test Pit No. ESHWT:: Termination Refusal: Obs. Water:	6 19 5: N N	017 9" 5" fo	Soils Serie Landscape Slope: B Parent Ma Hydrologi	es: Eldridge e: Forested terial: Marine c Soil Group:	С
Horizon A 0-6" Bw 6-19" Cd 19-55"	Color (Munse 10YR3/2 10YR4/4 2.5Y5/3	ell) Textur loamy loamy silty cl	e sand sand ay loam	Structure granular granular blocky-f	e-Consistence-Redox -friable-none -friable-none irm-5% Conc.

Test Pit No.	SB	Soi	ls Series: Boxford
ESHWT::	20"	Lar	ndscape: Forested
Termination (<i>@</i> 70"	Slo	pe: B
Refusal:	No	Par	ent Material: Marine
Obs. Water:	None	Hyd	drologic Soil Group: C
Horizon	Color (Munsell)	Texture	Structure-Consistence-Redox
A 0-6"	10YR3/2	silt loam	granular-friable-none
Bw 6-20"	10YR4/6	silt loam	granular-friable-none
Cd 20-70"	2.5Y5/3	silty clay loam	blocky-firm-10% Conc.

SUL DI BLE ANAPARA 004 THE TOT HUMIN

Test Pit Data: 76 Portsmouth Ave 7-2-2024 —Page 5 of 5

APPENDIX IV

Site Specific Soil Survey Soil Note and Map

This map product is within the technical standards of the National Cooperative Soil Survey. It is a special purpose product, intended for infiltration requirements by the NH DES Alteration of Terrain Bureau. It was produced by a professional soil scientist, and is not a product of the USDA Natural Resources Conservation Service. There is a report that accompanies this map.

The site specific soil map was produced 10-22-2024, and was prepared by James P. Gove, CSS # 004, Gove Environmental Services, Inc.

Map Unit HISS Symbol Hydrologic Soil Group Map Unit Name Symbol Boxford silt loam С 32 353 33 Scitico silt loam С 553 38 Eldridge loamy sand С 343 134 Maybid mucky silt loam 653 D 953 Boxford somewhat poorly drained С 453 С 299/dfccc Udorthents, smoothed 363 500/dfccc С Udorthents, loamy 363 D 600/ffccd Endoaquents, loamy 563 Urban Land 699 n/a n/a

SOIL IDENTIFICATION LEGEND

SLOPE PHASE:

0-8%	В	8-15%	С	15-25%	D
25%-50%	E	50%+	F		

T THE USER'S SOLE RISK AND WITHOUT LIABILITY TO JBE.

REVISION

ΒY

Stratham, NH 03885

REV.

DATE

PLAN REFERENCES

- "PLAN OF DRAINAGE EASEMENT, EXETER, NH, PREPARED FOR EXETER HOSPITAL" BY KIMBALL CHASE, DATED MAY 23, 1988. R.C.R.D. PLAN #D-18012.
- SURVEY ASSOC., INC., DATED JANUARY 12, 1984. R.C.R.D. PLAN #C-12104.
- "SUBDIVISION OF LAND FOR JOHN W. FLYNN, EXETER, NH" BY KIMBALL CHASE COMPANY, INC., DATED FEBUARY 11, 1988. R.C.R.D. PLAN #D-17605.
- "BOUNDARY AND TOPOGRAPHIC PLAN FOR STAR ENTERPRISE, EXETER, NH" BY STORCH ASSOCIATES, DATED JUNE 15, 1999. R.C.R.D. PLAN #D-22270.
- "EASEMENT PLAN FOR COLLISHAW FOY AGENCY INC., EXETER, NH" BY CORNERSTONE ASSOCIATES INC., DATED OCTOBER 31, 1995. R.C.R.D. PLAN #C-24287.
- "PLAN OF LAND FOR HENRY & ROBERTA A. SHEPARD AND CHARLES A. & EVA S. KOIRTH, EXETER, NH" BY JOHN W. DURGIN CIVIL ENGINEERS, DATED JULY 17, 1963. PLAN #108.
- "PLAN OF LOTS, PROPERTY OF J. EVERETT TOWLE, EXETER, NH" BY ARTHUR W. DUDLEY, C.E., DATED 1924. PLAN #0671.
- "PROPOSED SEWER EASEMENT, ACROSS LAND OF JEAN & SUE E. PULVER, EXETER, NH" BY JOHN W. DURGIN CIVIL ENGINEERS, DATED JULY 1952. NR-PLAN.
- "PLAN OF COUNTRY CLUB ESTATES FOR DOUGLAS E. HUNTER, EXETER, NH" BY CHESTER A. LEACH, C.E., DATED JUNE 14, 1950. NR-PLAN #01481.
- 10. "A PORTION OF THE LAND OF JEAN AND SUE PULVER, EXETER, NH" BY LEACH AND HUNTER, DATED OCTOBER 4, 1949. NR-PLAN #01721.
- 11. "PLOT OF LAND FOR CARROLS DEVELOPMENT CORP & CHICAGO TITLE COMPANY, EXETER, NH" BY UNITED SURVEYORS & ENGRS., DATED MARCH 20, 1970. R.C.R.D. PLAN #1726.
- 12. "PLAN OF LAND FOR JEAN A. & SUE E PULVER, EXETER, NH" BY #01823.
- 13. "PLAN OF LAND FOR JEAN A. & SUE E. PULVER, EXETER, NH" BY #02551
- 14. "PART OF COUNTRY CLUB ESTATES, SCALE: 1 IN = 40 FT" BY JOHN W. DURGIN CIVIL ENGINEERS, DATED AUGUST 4TH, 1955. NR-PLAN #02552.
- NH" BY T.A. NOWAK, DATED APRIL 1958. NR-PLAN #02680.
- EXETER, NH" BY JOHN W. DURGIN CIVIL ENGINEERS, DATED MAY 2, 1972. R.C.R.D. PLAN #D-2924.
- 17. "PLAN OF LOTS FOR JEAN A. & SUE E. PULVER, EXETER, NH" BY JOHN W. DURGIN CIVIL ENGINEERS, DATED MAY, 1950. NR-R.C.R.D. #10339.
- 18. "THE STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION. NR-PLAN #3447.

ſ¶\₿

GF

Project: Owner of Record:

Plan Name:

"LOT LINE CHANGE FOR GARY W. BLAKE, EXETER, NH" BY PARKER

JOHN W. DURGIN CIVIL ENGINEERS, DATED AUGUST 1951. NR-PLAN

JOHN W. DURGIN CIVIL ENGINEERS, DATED AUGUST 1951. NR-PLAN

15. "PLOT PLAN FOR HENRY SHEPARD & CHARLES KOIRTH, EXETER,

16. "SUBDIVISION OF LAND, SIMONS TO ROCKINGHAM NATIONAL BANK,

TRANSPORTATION, RIGHT OF WAY PLANS, PROPOSED FEDERAL AID PROJECT, FEDERAL PROJECT NO .: STP-X-5153(005), NH PROJECT NO.10025B, NH ROUTE 108" BY NEW HAMPSHIRE DEPARTMENT OF

EXISTING CONDITIONS NOTES:

- UNDERGROUND FACILITIES, UTILITIES AND STRUCTURES HAVE BEEN PLOTTED FROM FIELD OBSERVATION AND THEIR LOCATION MUST BE CONSIDERED APPROXIMATE ONLY. NEITHER JONES & BEACH ENGINEERS, INC., NOR ANY OF THEIR EMPLOYEES TAKE RESPONSIBILITY FOR THE LOCATION OF ANY UNDERGROUND STRUCTURES OR UTILITIES NOT SHOWN THAT MAY EXIST. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO HAVE ALL UNDERGROUND STRUCTURES AND/OR UTILITIES LOCATED PRIOR TO EXCAVATION WORK BY CALLING 1-888-DIG-SAFE (1-888-344-7233).
- 2. VERTICAL DATUM: XXXXXX. HORIZONTAL DATUM: XXXXXX
- BASE ELEVATION WAS ESTABLISHED THROUGH MULTIPLE GPS POST PROCESS OBSERVATIONS AND WAS REDUCED TO THE NAVD88 DATUM BY THE NATIONAL GEODETIC SURVEY OPUS SOFTWARE.
- SUBJECT PROPERTY LOCATED WITHIN FEDERALLY DESIGNATED FLOOD HAZARD ZONE. REFERENCE FEMA COMMUNITY PANEL NO. 33015C0406E, DATED 5/16/2005.
- 5. THE LIMITS OF JURISDICTIONAL WETLANDS WERE DELINEATED BY (FILL IN NAME)(ZZZ) DURING SPRING, 2010, USING (EQUIPMENT) AND IN ACCORDANCE WITH THE FOLLOWING GUIDANCE DOCUMENTS:

a. THE CORPS OF ENGINEERS FEDERAL MANUAL FOR IDENTIFYING AND DELINEATING JURISDICTIONAL WETLANDS.

b. THE NORTH CENTRAL & NORTHEAST REGIONAL SUPPLEMENT TO THE FEDERAL MANUAL.

c. THE CURRENT VERSION OF THE FIELD INDICATORS FOR IDENTIFYING HYDRIC SOILS IN NEW ENGLAND, AS PUBLISHED BY THE NEW ENGLAND INTERSTATE WATER POLLUTION CONTROL COMMISSION AND/OR THE CURRENT VERSION OF THE FIELD INDICATORS OF HYDRIC SOILS IN THE UNITED STATES, AS PUBLISHED BY THE USDA, NRCS, AS APPROPRIATE.

d. THE CURRENT NATIONAL LIST OF PLANT SPECIES THAT OCCUR IN WETLANDS, AS PUBLISHED BY THE US FISH AND WILDLIFE SERVICE.

- HIGH INTENSITY SOIL MAPPING WAS PERFORMED BY (FILL IN NAME)(ZZZ DURING SPRING, 2010, TO THE STANDARDS OF HIGH INTENSITY SOIL MAPS FOR NEW HAMPSHIRE: STANDARDS (2002: SOCIETY OF SOIL SCIENTISTS OF NORTHERN NEW ENGLAND).
- 8. SITE-SPECIFIC SOIL MAPPING WAS PERFORMED BY GOVE ENVIRONMENTAL INC. DURING SPRING, 2010, AND IS BASED ON THE STANDARDS OF SITE-SPECIFIC SOIL MAPPING STANDARDS FOR NEW HAMPSHIRE AND VERMONT. VERSION 2.0 (1999: SOCIETY OF SOIL SCIENTISTS OF NORTHERN NEW ENGLAND). THE MAP IS WITHIN THE TECHNICAL STANDARDS OF THE NATIONAL COOPERATIVE SOIL SURVEY. IT IS A SPECIAL PURPOSE PRODUCT INTENDED FOR THE USE(S) REQUIRING THE SITE SPECIFIC SOIL SURVEY AND IS PRODUCED BY A CERTIFIED SOIL SCIENTIST. IT IS NOT A PRODUCT OF THE USDA NATURAL RESOURCES CONSERVATION SERVICE. A NARRATIVE REPORT IS A COMPONENT OF THE MAP.
- 9. A TEMPORARY CULVERT AND ROADBED SHALL BE IN PLACE PRIOR TO ANY USE OF A WETLAND CROSSING.
- 10. WETLAND IMPACTS SHALL NOT OCCUR UNTIL ALL PERMITS HAVE BEEN ACQUIRED AND IMPACT MITIGATION REQUIREMENTS HAVE BEEN SATISFIED.
- 11. TEST PITS PERFORMED BY JAMES GOVE, GOVE ENVIRONMENTAL SERVICES, INC., 7/2/24.
- 12. WETLAND BOUNDARIES AND CONSTRUCTION LIMITS ARE TO BE CLEARLY MARKED PRIOR TO THE START OF CONSTRUCTION.

RAP	HIC	SCA	LE			
50		100			200	
(1	IN FEET ." = 50	,) ,				

PROJECT PARCEL TOWN OF EXETER TAX MAP 65, LOT 118

APPLICANT **GREEN & COMPANY** 11 LAFAYETTE RD PO BOX 1297 NORTH HAMPTON, NH 03862

> TOTAL LOT AREA 291,630 SQ. FT. 6.7 ACRES

EXISTING CONDITIONS PLAN

NAME OF PROJECT 76 PORTSMOUTH AVE, EXETER, NH

RAP REALTY MANCHESTER LLC 50 ATLANTIC AVE, SEABROOK, NH

SHEET 2 OF12

JBE PROJECT NO. 24029

APPENDIX V

NRCS Soil Map

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

USDA

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
305	Lim-Pootatuck complex	2.1	7.5%
538A	Squamscott fine sandy loam, 0 to 5 percent slopes	3.8	13.9%
699	Urban land	9.4	33.8%
799	Urban land-Canton complex, 3 to 15 percent slopes	12.4	44.8%
Totals for Area of Interest		27.8	100.0%

APPENDIX VI

Extreme Precipitation Estimates

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

	Metadata for Point											
Smoothing	Yes											
State												
Location												
Latitude	42.986 degrees North											
Longitude	70.937 degrees West											
Elevation	10 feet											
Date/Time	Tue Oct 22 2024 11:45:48 GMT-0400 (Eastern Daylight Time)											

Added 15% to precipitation estimates due to location in Great Bay / Coastal Community 1 Year: 2.68*1.15 = 3.08 in 2 Year: 3.22*1.15 = 3.70 in 10 Year: 4.91*1.15 = 5.65 in 25 Year: 6.24*1.15 = 7.18 in 50 Year: 7.49*1.15 = 8.61 in

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7d
1yr	0.26	0.40	0.50	0.66	0.82	1.04	1yr	0.71	0.99	1.22	1.57	2.05	<mark>2.68</mark>	2.91	1yr	2.37	2.80	3.21	3.
2yr	0.32	0.50	0.62	0.82	1.02	1.30	2yr	0.88	1.18	1.52	1.94	2.49	<mark>3.22</mark>	3.57	2yr	2.85	3.43	3.94	4.
5yr	0.37	0.58	0.73	0.98	1.25	1.62	5yr	1.08	1.47	1.90	2.45	3.16	4.09	4.59	5yr	3.62	4.41	5.05	5.
10yr	0.41	0.65	0.83	1.12	1.46	1.90	10yr	1.26	1.73	2.25	2.92	3.78	<mark>4.91</mark>	5.56	10yr	4.34	5.34	6.09	7.
25yr	0.48	0.77	0.98	1.35	1.79	2.36	25yr	1.55	2.15	2.80	3.67	4.79	<mark>6.24</mark>	7.15	25yr	5.52	6.88	7.80	9.
50yr	0.54	0.87	1.11	1.56	2.10	2.79	50yr	1.81	2.54	3.33	4.38	5.74	<mark>7.49</mark>	8.66	50yr	6.63	8.33	9.42	11
100yr	0.61	0.98	1.27	1.80	2.45	3.30	100yr	2.12	3.00	3.96	5.24	6.88	9.00	10.49	100yr	7.96	10.09	11.37	13
200yr	0.69	1.12	1.45	2.08	2.87	3.90	200yr	2.48	3.55	4.70	6.24	8.23	10.81	12.71	200yr	9.56	12.23	13.73	16
500yr	0.82	1.34	1.75	2.54	3.55	4.86	500yr	3.06	4.43	5.88	7.87	10.44	13.77	16.39	500yr	12.19	15.76	17.62	20

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7d
1yr	0.24	0.37	0.45	0.60	0.74	0.89	1yr	0.64	0.87	0.95	1.26	1.55	2.28	2.54	1yr	2.02	2.44	2.89	3.
2yr	0.32	0.49	0.60	0.81	1.00	1.19	2yr	0.87	1.16	1.37	1.82	2.33	3.11	3.50	2yr	2.75	3.36	3.85	4.
5yr	0.36	0.55	0.68	0.93	1.19	1.42	5yr	1.03	1.39	1.62	2.12	2.74	3.82	4.28	5yr	3.38	4.11	4.72	5.
10yr	0.39	0.61	0.75	1.05	1.35	1.63	10yr	1.17	1.59	1.82	2.40	3.07	4.41	4.97	10yr	3.90	4.78	5.49	6.
25yr	0.45	0.69	0.86	1.23	1.61	1.95	25yr	1.39	1.90	2.12	2.78	3.58	4.90	6.06	25yr	4.34	5.82	6.68	7.
50yr	0.50	0.77	0.95	1.37	1.85	2.24	50yr	1.59	2.19	2.36	3.12	4.01	5.54	7.02	50yr	4.91	6.75	7.76	9.
100yr	0.57	0.85	1.07	1.55	2.12	2.57	100yr	1.83	2.51	2.65	3.48	4.48	6.25	8.12	100yr	5.53	7.81	9.00	10
200yr	0.63	0.95	1.20	1.74	2.43	2.95	200yr	2.10	2.88	2.95	3.88	4.99	7.01	9.65	200yr	6.21	9.28	10.45	12
500yr	0.74	1.11	1.42	2.07	2.94	3.56	500yr	2.54	3.48	3.42	4.48	5.80	8.14	11.77	500yr	7.20	11.32	12.71	14

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7d
1yr	0.28	0.44	0.54	0.72	0.89	1.08	1yr	0.76	1.06	1.26	1.71	2.17	2.97	3.10	1yr	2.63	2.98	3.57	4.
2yr	0.33	0.51	0.63	0.86	1.05	1.26	2yr	0.91	1.23	1.48	1.95	2.49	3.40	3.66	2yr	3.01	3.52	4.05	4.
5yr	0.40	0.62	0.77	1.05	1.34	1.61	5yr	1.16	1.58	1.87	2.49	3.17	4.37	4.92	5yr	3.87	4.73	5.40	6.
10yr	0.47	0.73	0.90	1.26	1.63	1.97	10yr	1.41	1.93	2.26	3.03	3.82	5.44	6.16	10yr	4.81	5.92	6.76	7.
25yr	0.59	0.89	1.11	1.58	2.08	2.56	25yr	1.80	2.50	2.93	3.93	4.90	7.66	8.32	25yr	6.78	8.00	9.07	10
50yr	0.68	1.04	1.30	1.86	2.51	3.11	50yr	2.17	3.04	3.56	4.79	5.94	9.60	10.45	50yr	8.49	10.05	11.36	13
100yr	0.81	1.22	1.53	2.21	3.02	3.78	100yr	2.61	3.69	4.33	5.86	7.21	12.03	13.14	100yr	10.65	12.64	14.21	16
200yr	0.95	1.42	1.80	2.61	3.64	4.60	200yr	3.14	4.50	5.28	7.17	8.73	15.14	16.17	200yr	13.40	15.55	17.81	20
500yr	1.18	1.75	2.25	3.27	4.65	5.96	500yr	4.01	5.83	6.86	9.37	11.28	20.53	21.82	500yr	18.17	20.98	23.97	27

Climate Center

APPENDIX VII

Rip Rap Design Calculations

RIP RAP CALCULATIONS

"Lilac Place" 76 Portsmouth Avenue Exeter, NH

Jones & Beach Engineers, Inc. P.O. Box 219 Stratham, NH 03885

2-Nov-24

Rip Rap equations were obtained from the *Stormwater Management and Erosion Control Handbook for Urban and Developing Areas in New Hampshire.* Aprons are sized for the 10-Year storm event.

TAILWATER < HALF THE D_0

$$\begin{split} & L_a = (1.8 \text{ x } \text{Q}) \ / \ D_0^{-3/2} + (7 \text{ x } \text{D}_o) \\ & W = L_a + (3 \text{ x } \text{D}_o) \text{ or defined channel width} \\ & d_{50} = (0.02 \text{ x } \text{Q}^{4/3}) \ / \ (\text{T}_w \text{ x } \text{D}_0) \end{split}$$

Culvert or	Tailwater	Discharge	Diameter	Length of	Width of	d ₅₀ -Median Stone
Catch Basin	(Feet)	(C.F.S.)	of Pipe	Rip Rap	Rip Rap	Rip Rap
(Sta. No.)	T_w	Q	D _o	L _a (feet)	W (feet)	d50 (feet)
2P Outlet Pipe	0.43	2.78	1.414	12.9	17	0.13
3R - 15" HDPE	0.56	2.09	1.25	11.4	15	0.08
6P Outlet Pipe	0.22	0.14	1	7.3	10	0.01
7P Outlet Pipe	0.25	0.71	1	8.3	11	0.05
7R - 15" HDPE	0.38	4.42	1.25	14.4	18	0.31
14P - 12" HDPE	0.25	0.62	1	8.1	11	0.04
4P - 12" HDPE	0	0	1	7.0	10	#DIV/0!
11P - 12" HDPE	0.15	0.17	1	7.3	10	0.01

2P: Two 12" culverts in parallel. Effective diameter = sqrt((2(pi(0.5^2))/pi)*2 = Square root of 2 = approx 1.414 4P: 25-Year storm is fully infiltrated. No discharge through outlet pipe as modelled. TAILWATER > HALF THE D₀

 $L_a = (3.0 \text{ x Q}) / D_0^{3/2} + (7 \text{ x D}_o)$

 $W = (0.4 \text{ x } L_a) + (3 \text{ x } D_o)$ or defined channel width

$$d_{50} = (0.02 \text{ x } Q^{4/3}) / (T_{w} \text{ x } D_{0})$$

Culvert or	Tailwater	Discharge	Diameter	Length of	Width of	d ₅₀ -Median Stone
Catch Basin	(Feet)	(C.F.S.)	of Pipe	Rip Rap	Rip Rap	Rip Rap
(Sta. No.)	T_w	Q	D_{o}	L _a (feet)	W (feet)	d50 (feet)
N/A				#DIV/0!	#DIV/0!	#DIV/0!

Table 7-24 Recommended Rip Rap Gradation Ranges										
d_{50} Size =	0.25	Feet	3	Inches						
% of Weight Smaller		Siz	ze of Stone (Inc	ches)						
Than the Given d ₅₀ Size		From		То						
100%		5		6						
85%		4		5						
50%		3		5						
15%		1		2						

Table 7-24 Recommended Rip Rap Gradation Ranges									
d_{50} Size =	0.5	Feet	6	Inches					
% of Weight Smaller		Siz	ze of Stone (Ind	ches)					
Than the Given d ₅₀ Size		From		То					
100%		9		12					
85%		8		11					
50%		6		9					
15%		2		3					

APPENDIX VIII

BMP and GRV Worksheets

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #1 / 1P

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

Yes	_	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07	7(a).
0.88	ас	A = Area draining to the practice	
0.74	ас	A _I = Impervious area draining to the practice	
0.84	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.81	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
0.71	ac-in	WQV= 1" x Rv x A	
2,580	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
645	cf	25% x WQV (check calc for sediment forebay volume)	
1,935	cf	75% x WQV (check calc for surface sand filter volume)	
Sediment	t Forebay	Method of Pretreatment? (not required for clean or roof runoff)	
674	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	- iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	_	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
32.95	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.04	-		
0.84	cts	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table)	
0.84	cts hours	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
0.84 1.71 29.75	cts hours feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV} E_{FC} = Elevation of the bottom of the filter course material ²	<u><</u> 72-hrs
0.84 1.71 29.75 28.75	cts hours feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable	<u><</u> 72-hrs
0.84 1.71 29.75 28.75 34.17	cts hours feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi	≤ 72-hrs it)
0.84 1.71 29.75 28.75 34.17 30.50	cts hours feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	<u>≤</u> 72-hrs it) pit)
0.84 1.71 29.75 28.75 34.17 30.50 1.00	cts hours feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course	≤ 72-hrs it) pit) ≥ 1'
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75)	cts hours feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course	≤ 72-hrs it) ≥ 1' ≥ 1'
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42)	cts hours feet feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilter $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course	≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46	cts hours feet feet feet feet feet feet feet fee	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter EROCK = Elevation of bedrock (if none found, enter the lowest elevation of the test DFC to UD = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	≤ 72-hrs it) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46 34.50	cts hours feet feet feet feet feet feet ft ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilter $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46 34.50 YES	cts hours feet feet feet feet feet feet ft ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice	≤ 72-hrs it) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46 34.50 YES If a surface	cts hours feet feet feet feet feet feet ft ft sand filter	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/Q _{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter the lowest elevation of the test pilter to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice or underground sand filter is proposed:	≤ 72-hrs it) ≥ 1' ≥ 1' ≥ 1' ≥ 1' + yes
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46 34.50 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter Elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes < 10 ac
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46 34.50 YES If a surface YES	cts hours feet feet feet feet feet ft ft sand filter ac cf	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pi $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac ≥ 75%WQV</pre>
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46 34.50 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac cf inches	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter course elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac </pre> <pre>> 75%WQV 18", or 24" if within GPA</pre>
0.84 1.71 29.75 28.75 34.17 30.50 1.00 (0.75) (4.42) 34.46 34.50 YES If a surface YES Sheet	cts hours feet feet feet feet feet feet ft ft sand filter ac cf inches	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness Note what sheet in the plan set contains the filter course specification.	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1' ≥ 1' ≤ 75' </pre> <pre>< 10 ac ≥ 75%WQV 18", or 24" if within GPA</pre>

If a biorete	ntion a	rea i	is proposed:	
YES	ас		Drainage Area no larger than 5 ac?	← yes
4,854	cf		V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches		D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet		D6	Note what sheet in the plan set contains the filter course specification	
3.0	:1		Pond side slopes	<u>> 3</u> :1
Sheet		D6	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avemei	nt is	proposed:	
			Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres		A _{SA} = Surface area of the pervious pavement	
	:1		Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches		D _{FC} = Filter course thickness	12", or 18" if within GPA
	-			mod. 304.1 (see
Sheet			Note what sheet in the plan set contains the filter course spec.	spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Nearest test pit is TP 6001. 16" to SHWT and dug to 60" without encountering ledge. Existing high contour = 35.5. SHWT = 35.5-16/12 = 34.17; Bottom of pit = 35.5-5 = 30.5

NHDES Alteration of Terrain

Last Revised: January 2019

Stage-Area-Storage for Pond 1P: Bioretention Pond #1

Elevation	Surface	Storage	Elevation (feet)	Surface	Storage	Overflow $d = 24.1$
29.74	026		22.04	2.645	1 916	
20.74	920	27	24.04	2,045	4,010	Vol. below = $5,224$ cf
20.04	920	57	24.14	2,730	5,000	by interpolation
20.94	920	14	<mark>- 34.14</mark> - 24.24	2,010	5,502	Required WOV -
29.04	920	111	34.24	2,900	5,040	
29.14	920	148	34.34	4,054	0,043	2,580 CT
29.24	926	185	34.44	4,135	6,453	Storage provided =
29.34	926	222				5224-370 = 4.854 cf
29.44	926	259				~ 2.590 of minimum
29.54	926	296	Bottom of t	filter course =	29 75	> 2,560 CI IIIIIIIIIIIIII
29.64	926	333	Vol. holow	270 of	20.10	
29.74	926	370	voi. below	= 370 Cl		
29.84	926	384				
29.94	926	398				
30.04	926	412				
30.14	926	426				
30.24	926	440				
30.34	926	454				
30.44	926	468				
30.54	926	482				
30.64	926	495				
30.74	926	509				
30.84	926	523				
30.94	926	537				
31.04	926	551				
31.14	926	565				
31.24	926	579				
31.34	926	583				
31 44	926	588				
31 54	949	637				
31.64	1 008	735				
31 74	1,000	830				
31.87	1 1 2 1	000				
31.04	1,101	1 065				
32.04	1,130	1,000				
22.04	1,200	1,100				
32.14	1 2 2 1	1,517				
32.24	1,301	1,452				
32.34	1,444	1,595				
32.44	1,500	1,741				
32.34	1,074	1,090				
32.04	1,041	2,000	Volume belo	W E(WQV) =	Volume	
32.74	1,710	2,223	bolow filtor o	(0,0,0) =	v olume	
32.84	1,780	2,397			=	
32.94	1,852	2,579	370+2580 =	2,950 cf		
33.04 22.44	1,920	2,708	E(WQV) = 3	2.95 by interp	olation	
33.14	1,999	2,904				
33.24 22.24	2,010	3,100 2 270				
33.34	2,102	3,319				
33.44 22 F 4	2,231	3,598				
33.54	2,311	3,825				
33.04	2,392	4,001				
33.74	2,4/5	4,304				
JJ.04	∠,ຉຉໟ	4,550				

Stage-Discharge for Pond 1P: Bioretention Pond #1

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
28 74	0.00	31.34	0.65	33.94	0.94
28 79	0.00	31.39	0.66	33.99	0.95
28.84	0.02	31.44	0.67	34.04	0.95
28.89	0.04	31.49	0.67	34.09	0.96
28.94	0.08	31.54	0.68	34.14	1.12
28.99	0.11	31.59	0.69	34.19	1.52
29.04	0.15	31.64	0.69	34.24	2.05
29.09	0.17	31.69	0.70	34.29	2.68
29.14	0.20	31.74	0.71	34.34	3.39
29.19	0.22	31.79	0.71	34.39	4.19
29.24	0.24	31.84	0.72	34.44	5.06
29.29	0.26	31.89	0.72	34.49	6.00
29.34	0.27	31.94	0.73		
29.39	0.29	31.99	0.74		
29.44	0.30	32.04	0.74		
29.49	0.32	32.09	0.75		
29.54	0.33	32.14	0.75		
29.59	0.34	32.19	0.76		
29.64	0.36	32.24	0.77		
29.69	0.37	32.29	0.77		
29.74	0.38	32.34	0.78		
29.79	0.39	32.39	0.78		
29.84	0.40	32.44	0.79		
29.89	0.41	32.49	0.79		
29.94	0.43	32.54	0.80		
29.99	0.44	32.59	0.81		
30.04	0.45	32.04	0.81		
30.09	0.40	32.09	0.02		
30.14	0.40	32.74	0.02		
30.19	0.47	32.79	0.00		
30.24	0.40	32.04	0.00	E(WQV) =	: 32.95
30.34	0.40	32.00	0.84		- 0.84 cfs
30.39	0.51	32.99	0.85		- 0.0+ 013
30.44	0.52	33.04	0.85		
30.49	0.53	33.09	0.86		
30.54	0.54	33.14	0.86		
30.59	0.54	33.19	0.87		
30.64	0.55	33.24	0.87		
30.69	0.56	33.29	0.88		
30.74	0.57	33.34	0.88		
30.79	0.58	33.39	0.89		
30.84	0.58	33.44	0.89		
30.89	0.59	33.49	0.90		
30.94	0.60	33.54	0.90		
30.99	0.61	33.59	0.91		
31.04	0.61	33.64	0.91		
31.09	0.62	33.69	0.92		
31.14 31.10	0.03	33.74	0.92		
31.19	0.03	33.19 33 QA	0.93		
31.24	0.04	33.04	0.93		
01.20	0.00	00.00	0.04		

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #2 / 7P

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

Yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07	7(a).
0.19	ас	A = Area draining to the practice	
0.13	ас	A _I = Impervious area draining to the practice	
0.67	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.65	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
0.13	ac-in	WQV= 1" x Rv x A	
459	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
115	cf	25% x WQV (check calc for sediment forebay volume)	
344	cf	75% x WQV (check calc for surface sand filter volume)	
Pre	e-Tx	_Method of Pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	n if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	- iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	<u> </u>	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	$T_{\text{DRAIN}} = \text{Drain time} = V / (A_{\text{SA}} * I_{\text{DESIGN}})$	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
35.07	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.74	-		
0.74	cts	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
0.74	hours	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
0.74 0.34 32.75	cts hours feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV} E_{FC} = Elevation of the bottom of the filter course material ²	<u><</u> 72-hrs
0.74 0.34 32.75 31.75	feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable	<u><</u> 72-hrs
0.74 0.34 32.75 31.75 33.67	cts hours feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi	≤ 72-hrs t)
0.74 0.34 32.75 31.75 33.67 30.00	cts hours feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	<u>≤ 72-hrs</u> t) pit)
0.74 0.34 32.75 31.75 33.67 30.00 1.00	cts hours feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D _{FC to UD} = Depth to UD from the bottom of the filter course	≤ 72-hrs t) pit) ≥ 1'
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75	cts hours feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course	≤ 72-hrs t) pit) ≥ 1' ≥ 1'
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92)	cts hours feet feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course	≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1'
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16	cts hours feet feet feet feet feet feet feet fee	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'</pre>
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16 35.50	cts hours feet feet feet feet feet feet ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16 35.50 YES	cts hours feet feet feet feet feet feet ft ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice	≤ 72-hrs t) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16 35.50 YES If a surface	cts hours feet feet feet feet feet feet ft ft sand filter	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pither to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16 35.50 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter EROCK = Elevation of bedrock (if none found, enter the lowest elevation of the test D $F_{C to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes < 10 ac
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16 35.50 YES If a surface YES	cts hours feet feet feet feet feet ft ft sand filter ac cf	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter to UD form the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course P_{eak} elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: P = Volume of storage ³ (attach a stage-storage table)	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac ≥ 75%WQV</pre>
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16 35.50 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac cf inches	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter course elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness	<pre> < 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> < 10 ac < 75%WQV 18", or 24" if within GPA
0.74 0.34 32.75 31.75 33.67 30.00 1.00 2.75 (0.92) 35.16 35.50 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac cf inches	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness Note what sheet in the plan set contains the filter course specification.	<pre> < 72-hrs t) pit)</pre>

If a biorete	ntion a	rea i	is proposed:	
YES	ac		Drainage Area no larger than 5 ac?	← yes
541	cf		V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
18.0	inches	;	D _{FC} = Filter course thickness	within GPA
Sheet		D6	Note what sheet in the plan set contains the filter course specification	
3.0	:1		Pond side slopes	<u>> 3</u> :1
Sheet		D6	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	aveme	nt is	proposed:	
			Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres		A _{SA} = Surface area of the pervious pavement	
	:1		Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches	;	D _{FC} = Filter course thickness	12", or 18" if within GPA
	-			mod. 304.1 (see
Sheet			Note what sheet in the plan set contains the filter course spec.	spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Nearest test pit is TP 6001. 16" to SHWT and dug to 60" without encountering ledge. Existing high contour = 35. SHWT = 35-16/12 = 33.67; Bottom of pit = 35-5 = 30

NHDES Alteration of Terrain

Last Revised: January 2019

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 7P: Bioretention Pond #2

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
31.74	490	0	34.34	490	309	
31.79	490	10	34.39	490	310	
31.84	490	20	34.44	490	311	
31.89	490	29	34.49	490	312	
31.94	490	39	34 54	503	337	
31.09	490	49	34 59	519	363	
32.04	400	50	34.64	536	380	
32.04	490	59	34.60	553	309 416	
32.09	490	09	24.09	555	410	
32.14	490	10	34.74	570	444	Volume below E(WQV)
32.19	490	00	34.79	000 005	473	= Volume below filter
32.24	490	98	34.84	605	503	
32.29	490	108	34.89	623	534	course + vvQv =
32.34	490	118	34.94	642	566	196+459 = 655 cf
32.39	490	127	34.99	660	598	F(WQV) = 35.07 by
32.44	490	137	35.04	678	632	E(WQV) = 00.01 by
32.49	490	147	35.09	696	666	interpolation
32.54	490	157	35.14	715	701	
32.59	490	167	<mark>35.19</mark>	733	737	Overflow el. $= 35.2$
32.64	490	176	35.24	752	774	Vol. below -737 cf
32.69	490	186	35.29	771	813	
32.74	490	196	35.34	790	852	Required $WQV = 655$ cf
32.79	490	200	35.39	809	892	Storage provided =
32 84	490	203	35 44	829	932	737-196 - 541 cf
32.89	490	207	35 49	849	974	$\frac{101}{100} = \frac{04101}{04101}$
32.00	490	211	Dettern of fill	0-10		> 459 ct minimum
32.04	400	21/	Bottom of fill	er course = c	32.75	
33.04	400	214	Vol. below =	196 cf		
22.00	400	210				
22 14	490	222				
22.14	490	220				
33.19	490	229				
33.24	490	233				
33.29	490	230				
33.34	490	240				
33.39	490	244				
33.44	490	247				
33.49	490	251				
33.54	490	255				
33.59	490	258				
33.64	490	262				
33.69	490	266				
33.74	490	270				
33.79	490	273				
33.84	490	277				
33.89	490	281				
33.94	490	284				
33.99	490	288				
34.04	490	292				
34 09	490	295				
34 14	400 100	200				
3/ 10	400	203				
24.13	490	303				
J4.∠4	490	300				
34.29	490	307				

24029 PR CONDITION

Stage-Discharge for Pond 7P: Bioretention Pond #2

Elevation	Primary (cfs)	Elevation	Primary (cfs)	Elevation	Primary (cfs)	Elevation	Primary
31.74	0.00	32.78	0.30	33.82	0.58	34.86	0.72
31.74	0.00	32.70	0.39	33.02	0.50	34.80	0.72
21 79	0.00	32.00	0.39	22.04	0.50	34.00	0.72
31.70	0.00	32.02	0.40	33.00	0.59	34.90	0.73
31.00	0.01	32.04	0.40	33.00	0.59	34.92	0.73
31.0Z	0.01	32.00	0.41	33.90	0.59	34.94	0.73
31.04	0.02	32.00	0.41	33.9Z	0.59	34.90	0.73
31.80	0.03	32.90	0.42	33.94	0.60	34.98	0.74
31.88	0.04	32.92	0.42	33.96	0.60	35.00	0.74
31.90	0.05	32.94	0.43	33.98	0.60	35.02	0.74
31.92	0.06	32.96	0.43	34.00	0.61	35.04	0.74
31.94	0.08	32.98	0.43	34.02	0.61	35.06	0.74
31.96	0.09	33.00	0.44	34.04	0.61	35.08	0.75
31.98	0.10	33.02	0.44	34.06	0.62	35.10	0.75
32.00	0.12	33.04	0.45	34.08	0.62	35.12	0.75
32.02	0.13	33.06	0.45	34.10	0.62	35.14	0.75
32.04	0.15	33.08	0.45	34.12	0.62	35.16	0.76
32.06	0.16	33.10	0.46	34.14	0.63	35.18	0.76
32.08	0.17	33.12	0.46	34.16	0.63	35.20	0.76
32.10	0.18	33.14	0.46	34.18	0.63	35.22	0.81
32.12	0.19	33.16	0.47	34.20	0.63	35.24	0.89
32.14	0.20	33.18	0.47	34.22	0.64	35.26	0.99
32.16	0.21	33.20	0.48	34.24	0.64	35.28	1.12
32.18	0.22	33.22	0.48	34.26	0.64	35.30	1.26
32.20	0.22	33.24	0.48	34.28	0.65	35.32	1.42
32.22	0.23	33.26	0.49	34.30	0.65	35.34	1.58
32.24	0.24	33.28	0.49	34.32	0.65	35.36	1.77
32.26	0.25	33.30	0.49	34.34	0.65	35.38	1.96
32.28	0.25	33.32	0.50	34.36	0.66	35.40	2.16
32.30	0.26	33.34	0.50	34.38	0.66	35.42	2.38
32.32	0.27	33.36	0.50	34.40	0.66	35.44	2.60
32.34	0.27	33.38	0.51	34.42	0.66	35.46	2.83
32.36	0.28	33.40	0.51	34.44	0.67	35.48	3.08
32.38	0.29	33.42	0.52	34.46	0.67	35.50	3.33
32.40	0.29	33.44	0.52	34.48	0.67		- 35.07
32.42	0.30	33.46	0.52	34.50	0.68		-0.74 efe
32.44	0.30	33.48	0.53	34.52	0.68) = 0.74 CIS
32.46	0.31	33.50	0.53	34.54	0.68		
32.48	0.32	33.52	0.53	34.56	0.68		
32.50	0.32	33.54	0.54	34.58	0.69		
32.52	0.33	33.56	0.54	34.60	0.69		
32.54	0.33	33.58	0.54	34.62	0.69		
32.56	0.34	33.60	0.55	34.64	0.69		
32.58	0.34	33.62	0.55	34.66	0.70		
32.60	0.35	33.64	0.55	34.68	0.70		
32.62	0.35	33.66	0.55	34.70	0.70		
32.64	0.36	33.68	0.56	34.72	0.70		
32.66	0.36	33.70	0.56	34.74	0.71		
32.68	0.37	33.72	0.56	34.76	0.71		
32.70	0.37	33.74	0.57	34.78	0.71		
32.72	0.38	33.76	0.57	34.80	0.71		
32.74	0.38	33.78	0.57	34.82	0.72		
32.76	0.39	33.80	0.58	34.84	0.72		

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioretention Pond #3 / 8P

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

Yes	_	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07	7(a).
0.48	ас	A = Area draining to the practice	
0.38	ас	A _I = Impervious area draining to the practice	
0.80	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.77	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
0.37	ac-in	WQV= 1" x Rv x A	
1,330	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
332	cf	25% x WQV (check calc for sediment forebay volume)	
997	cf	75% x WQV (check calc for surface sand filter volume)	
Pre	e-Tx	_Method of Pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	if system IS NOT underdrained:	
	sf	A _{SA} = Surface area of the practice	
	- iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
-	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
32.08	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
0.00	-		
0.90	CTS	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
0.90	hours	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
0.90	cts hours feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV} E_{FC} = Elevation of the bottom of the filter course material ²	<u><</u> 72-hrs
0.90 0.82 28.25 27.25	feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable	<u><</u> 72-hrs
0.90 0.82 28.25 27.25 32.08	hours feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi	≤ 72-hrs t)
0.90 0.82 28.25 27.25 32.08 27.50	feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	≤ 72-hrs t) pit)
0.90 0.82 28.25 27.25 32.08 27.50 1.00	cts hours feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course	≤ 72-hrs it) ≥ 1'
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75	cts hours feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E _{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D _{FC to UD} = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course	≤ 72-hrs it) ≥ 1' ≥ 1'
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83)	cts hours feet feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'</pre>
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71	cts hours feet feet feet feet feet feet feet fee	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre>
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71 33.00	cts hours feet feet feet feet feet feet ft ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'</pre>
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71 33.00 YES	cts hours feet feet feet feet feet feet ft ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre>
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71 33.00 YES If a surface	cts hours feet feet feet feet feet feet ft ft sand filter	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed:	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ∴ yes
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71 33.00 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter Elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes < 10 ac
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71 33.00 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac cf	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac ≥ 75%WQV</pre>
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71 33.00 YES If a surface YES	cts hours feet feet feet feet feet feet ft ft sand filter ac cf inches	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter course elevation of bedrock (if none found, enter the lowest elevation of the test pilter to UD from the bottom of the filter course $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac </pre> <pre>> 75%WQV 18", or 24" if within GPA</pre>
0.90 0.82 28.25 27.25 32.08 27.50 1.00 0.75 (3.83) 32.71 33.00 YES If a surface YES Sheet	cts hours feet feet feet feet feet feet ft ft sand filter ac cf inches	$Q_{WQV} = Discharge at the E_{WQV}$ (attach stage-discharge table) $T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilter D_{FC to UD} = Depth to UD from the bottom of the filter courseD_{FC to ROCK} = Depth to bedrock from the bottom of the filter courseD_{FC to SHWT} = Depth to SHWT from the bottom of the filter coursePeak elevation of the 50-year storm event (infiltration can be used in analysis)Elevation of the top of the practice50 peak elevation \leq Elevation of the top of the practiceor underground sand filter is proposed:Drainage Area check.V = Volume of storage3 (attach a stage-storage table)D_{FC} = Filter course thicknessNote what sheet in the plan set contains the filter course specification.$	<pre>≤ 72-hrs t) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ★ yes <10 ac 75%WQV 18", or 24" if within GPA

If a biorete	ntion a	rea i	is proposed:	
YES	ас		Drainage Area no larger than 5 ac?	← yes
1,814	cf		V = Volume of storage ³ (attach a stage-storage table)	<u>≥</u> WQV
18.0	inches		D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet		D6	Note what sheet in the plan set contains the filter course specification	
3.0	:1		Pond side slopes	<u>> 3</u> :1
Sheet		D6	Note what sheet in the plan set contains the planting plans and surface cover	
If porous p	avemei	nt is	proposed:	
			Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
	acres		A _{SA} = Surface area of the pervious pavement	
	:1		Ratio of the contributing area to the pervious surface area	≤ 5:1
	inches		D _{FC} = Filter course thickness	12", or 18" if within GPA
	-			mod. 304.1 (see
Sheet			Note what sheet in the plan set contains the filter course spec.	spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Nearest test pit is TP 6007. 5" to SHWT and dug to 60" without encountering ledge. Existing high contour = 32.5. SHWT = 32.5-5/12 = 32.08; Bottom of pit = 35-5 = 27.5

NHDES Alteration of Terrain

Last Revised: January 2019
Stage-Area-Storage for Pond 8P: Bioretention Pond #3

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sa-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	• • • • • •
27.24	238	0	32.44	1 276	1 8/13	Overflow el. $= 32.5$
27.24	238	10	32.44	1,270	1 974	Vol. below = 1909 cf
27.04	238	10	32.64	1,004	2 110	Required $WOV = 1330$ cf
27.44	230	20	32.04	1,595	2,110	
27.04	200	29	32.74	1,400	2,202	Storage provided =
27.04	238	38	32.84	1,515	2,401	1909-95 = 1.814 cf
27.74	238	48	32.94	1,578	2,555	> 1.330 cf minimum
27.84	238	57				
27.94	238	67				
28.04	238	76	Dettern of f	lt		
28.14	238	86	Bottom of II	iter course = 2	.8.25	
28.24	238	95	Vol. below :	= 95 cf		
28.34	238	99				
28.44	238	102				
28.54	238	106				
28.64	238	109				
28 74	238	113				
28.84	238	117				
28.04	238	120				
20.04	200	120				
29.04	200	124				
29.14	200	127				
29.24	238	131				
29.34	238	134				
29.44	238	138				
29.54	238	142				
29.64	238	145				
29.74	238	149				
29.84	238	150				
29.94	238	151				
30.04	248	164				
30.14	276	190				
30.24	304	219				
30.34	334	251				
30.44	365	286				
30.54	398	324				
30.64	432	366				
30.74	468	/11				
30.24	505	450				
20.04	505	409				
24 04	543	012				
31.04	503	800				
31.14	624	628				
31.24	667	693				
31.34	711	762				
31.44	757	835				
31.54	803	913				
31.64	852	996	Volume belo	w E(WQV)		
31.74	901	1,084	= Volume be	low filter		
31.84	952	1,176				
31.94	1.005	1.274	course + vvc	ע = גע		
32.04	1.058	1.377	95+1330 = 1	,425 cf		
32.14	1,110	1,486	$F(WQV) = 3^{\circ}$	2.08 by		
32 24	1 164	1 599				
32 34	1 220	1 718	interpolation			
02.07	1,220	1,710				
			I			

Stage-Discharge for Pond 8P: Bioretention Pond #3

Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cts)	(feet)	(cfs)	(feet)	(cfs)
27.24	0.00	29.84	0.65	32.44	0.94
27.29	0.00	29.89	0.66	32.49	0.95
27.34	0.02	29.94	0.67	32.54	1.07
27.39	0.04	29.99	0.67	32.59	1.37
27.44	0.08	30.04	0.68	32.64	1.77
27.49	0.11	30.09	0.69	32.69	2.24
27.54	0.15	30.14	0.69	32.74	2.78
27.59	0.17	30.19	0.70	32.79	3.38
27.64	0.20	30.24	0.71	32.84	4.03
27.69	0.22	30.29	0.71	32.89	4.74
27.74	0.24	30.34	0.72	32.94	5.48
27.79	0.26	30.39	0.72	32.99	6.28
27.04	0.27	30.44	0.73		
27.89	0.29	30.49	0.74		
27.94	0.30	30.34	0.74		
27.99	0.32	30.59	0.75		
20.04	0.33	30.04	0.75		
20.09	0.34	30.09	0.70		
20.14	0.30	30.74	0.77		
20.19	0.37	30.79	0.77		
20.24	0.30	30.89	0.70		
28.29	0.33	30.03	0.70		
28.39	0.40	30.94	0.79		
28.00	0.43	31.04	0.70		
28.49	0.44	31.09	0.80		
28.54	0.45	31.14	0.81		
28.59	0.46	31.19	0.82		
28.64	0.46	31.24	0.82		
28.69	0.47	31.29	0.83		
28.74	0.48	31.34	0.83		
28.79	0.49	31.39	0.84		
28.84	0.50	31.44	0.84		
28.89	0.51	31.49	0.85		
28.94	0.52	31.54	0.85		
28.99	0.53	31.59	0.86		
29.04	0.54	31.64	0.86		
29.09	0.54	31.69	0.87		
29.14	0.55	31.74	0.87		
29.19	0.56	31.79	0.88		
29.24	0.57	31.84	0.88		
29.29	0.58	31.89	0.89		
29.34	0.58	31.94	0.89		
29.39	0.59	31.99	0.90		
29.44	0.60	32.04	0.90	E(VVQV)	= 32.08
29.49	0.61	32.09	0.91	Q(WQV)	= 0.90 cfs
29.54	0.61	32.14	0.91		
29.59	0.62	32.19	0.92		
29.64	0.63	32.24	0.92		
29.69	0.63	32.29	0.93		
29.74	0.64	32.34	0.93		
29.19	0.05	32.39	0.94		
		l		I	

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP **that does not fit into one of the specific worksheets already provided** (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)

0.14	ас	A = Area draining to the practice
0.12	ас	A ₁ = Impervious area draining to the practice
0.89	decimal	I = Percent impervious area draining to the practice, in decimal form
0.85	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)
0.12	ac-in	WQV= 1" x Rv x A
434	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = Amount of rainfall. For WQF in NH, P = 1".
0.85	inches	Q = Water quality depth. Q = WQV/A
99	unitless	CN = Unit peak discharge curve number. CN =1000/(10+5P+10Q–10*[Q ² + 1.25*Q*P] ^{0.5})
0.1	inches	S = Potential maximum retention. S = (1000/CN) - 10
0.027	inches	Ia = Initial abstraction. Ia = 0.2S
6.0	minutes	T _c = Time of Concentration
700.0	cfs/mi ² /in	${\sf q}_{\sf u}$ is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
0.131	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac.

Designer's Notes:

For sizing of Focal Point #1 (Pond 3P) in conjunction with Focal Point design worksheet

FOCALPOINT New hampshire aot projects

- 1. Determine FocalPoint bed area (minimum 174 sf/acre of impervious area ex: 0.2 acres = 35 sf) See step 2 to determine if minimum size is appropriate.
 - Tributary impervious area:
 - Tributary pervious area:
 - Minimum FocalPoint bed area required: = ((A x 1.0) + (B x 0.4)) * 174
 - FocalPoint bed area provided:
 - Dimensions of proposed FocalPoint:

- = ______ ac (A) = ______ ac (B) = ______ sf = ______ sf = _____ ft x_____ ft
- 2. Model a Type II & III 24-hr rainfall event that generates the water quality volume to demonstrate that the entire storm volume is treated prior to activation of the overflow (typically set at 6 12 in above the mulch). Note: a 1.2 1.3 in rainfall event usually generates 1.0 in of runoff. Contact ACF for a sample HydroCAD node.

Size the Harco PVC domed overflow riser. Note: ACF recommends installation of a Fabco domed overflo	ow filter kit for overflow p	protection.
 Peak ponding depth from Type III 24-hr storm event: 	=	in
 Temporary storage volume provided at above depth: 	=	ft ³
	(typically 6 -	12 in)
 Temporary storage depth provided: 	=	in
 Type II & III 24-hr rainfall depth to generate WQv: 	=	in
• Water quality volume (WQv) goal:	=	ft ³

- - 6 in invert in elevation from FocalPoint:

for overflow protectio	n.
=	in
=	
ypically 6 - 12 in above mulch su	rface
=	_
(typically 3 ft below mulch surfa	ace)
_	

• _____ in invert out elevation:

3.

4. Flood control - peak flow attenuation of major storms

The treated flow and bypass flow can be routed to a detention system such as an open pond or a subsurface solution like an expanded R-Tank system. (contact ACF for additional information on designing expanded R-Tank systems)

- 5. Prepare a landscape plan for the FocalPoint bed area
- 6. Design review and installation oversight by manufacturer's representative
 - The design has been reviewed by ACF Environmental
 - Engineer will coordinate installation inspection with ACF Environmental

DESIGNING WITH FOCALPOINT IN NEW HAMPSHIRE

The New Hampshire Department of Environmental Services has approved the FocalPoint (High Performance Modular Biofiltration System) for use on AoT site development projects in the State of New Hampshire.

SIZING CRITERIA SUMMARY

- The surface area of the media within FocalPoint must be a minimum of 174 sf per 1.0 acre of impervious area (26 sf per 0.15 acres). The thickness of the media is to be no less than 1.5 ft (18 in).
- The system must be modelled in HydroCAD (or similar TR-55 modeling software) to demonstrate that the entire volume of a 1.22 in Type II or III 24-hr storm is treated prior to activation of the bypass/overflow (typically set at 6 12 in above the mulch surface). Note: A 1.22 in rainfall event typically generates 1.0 in of runoff.
- The R-Tank modular underdrain can be expanded beyond the footprint of the FocalPoint media bed for expanded infiltration and peak flow attenuation/detention post treatment.

FOCALPOINT SYSTEMS:

FOCALPOINT ACCESSORIES:

Pretreatment - Rain Guardian Turret

Pretreatment - Rain Guardian Foxhole

Pretreatment - PreTx

Bypass protection - Domed overflow with filter insert

For additional information please visit: www.acfenvironmental.com

Contact Rob Woodman - Senior Stormwater Engineer Cell: 207.272.4431 | Email: rwoodman@acfenv.com

Summary for Pond 3P: Focal Point #1

[90] Warning: Qout>Qin may require smaller dt or Finer Routing [87] Warning: Oscillations may require smaller dt or Finer Routing (severity=8)							
Inflow Area = Inflow = Outflow = Primary = Routed to	= 0.14 • 0.13 • 0.15 • 0.15 • 0.15 • Pond 4P :	40 ac, 89.2 5 cfs @ 12 5 cfs @ 12 5 cfs @ 12 Infiltration	23% Impervious 209 hrs, Volum 212 hrs, Volum 212 hrs, Volum System B	, Inflow De e= e= e=	pth = 0.8 0.010 af 0.010 af, 0.010 af,	3" for FP1 Atten= 0%, I	WQF event _ag= 1.6 min
Routing by E Peak Elev=)yn-Stor-Ind <mark>29.14'</mark> @ 12	d method, T 2.11 hrs S	^r ime Span= 0.0 urf.Area= 63 sf	0-48.00 hrs Storage=	, dt= 0.05 16 cf	hrs / 3	
Plug-Flow de Center-of-Ma	etention tim ass det. tim	e= (not calo e= 0.8 min	culated: outflow (813.8 - 813.0	precedes i)	nflow)	29.14-29 (12 in/ft)	= 0.14ft * = 1.68 in
Volume	Invert	Avail.Stora	age Storage [Description			
#1	26.75'	1	1 cf 5.00'W x 56 cf Ove	5.00'L x 2. erall x 20.0	25'H Foca % Voids	al Point	
#2	29.00'	6	9 cf Surface I	Bowl (Pris	matic)Liste	ed below (Re	calc)
		8	0 cf Total Ava	ilable Stora	age		
Elevation	Surf./	Area	Inc.Store	Cum.Sto	ore et)		
29.00	(0	25	0		0		
30.00		113	69		69		
Device Ro	uting	Invert	Outlet Devices				
#1 Priu #2 De	mary vice 1	26.00' 26.75'	12.0" Round L= 13.0' CPP Inlet / Outlet In n= 0.012, Flow 100.000 in/hr	Culvert , projecting vert= 26.00 v Area= 0.7 Exfiltration	, no headv)' / 25.50' 9 sf 1 over Sur	vall, Ke= 0.90 S= 0.0385 '/' face area P	00 Cc= 0.900 'hase-In= 0.10'
#3 De	#3 Device 1 (29.50) (18.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads Primary OutFlow Max=0.14 cfs @ 12.12 hrs HW=29 10' TW=23 44' (Dynamic Tailwater)						

1=Culvert (Passes 0.14 cfs of 4.82 cfs potential flow) **2=Exfiltration** (Exfiltration Controls 0.14 cfs) **3=Orifice/Grate** (Controls 0.00 cfs)

т

24029 PR CONDITION

Stage-Area-Storage for Pond 3P: Focal Point #1

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	
26.75	25	0	29.35	81	25	
26.80	25	Ō	29.40	85	28	
26.85	25	1	29.45	90	31	
26.90	25	1	29.50	94	35	Overflow el. $= 29.5$
26.95	25	1	29.55	98	38	Volume below = 35 cf
27.00	25	1	29.60	103	42	
27.05	25	2	29.65	107	46	
27.10	25	2	29.70	112	50	
27.15	25	2	29.75	116	55	
27.20	25	2	29.80	120	59	
27.25	25	3	29.85	125	64	
27.30	25	3	29.90	129	69	
27.35	25	3	29.95	134	75	
27.40	25	3	30.00	138	80	
27.45	25	3				
27.50	25	4				
27.55	25	4				
27.60	25	4				
27.65	25	4				
27.70	25	5				
27.75	25	5				
27.80	25	5				
27.85	25	6				
27.90	25	6				
27.95	25	6				
28.00	25	6				
28.05	25	7				
28.10	25	7				
28.15	25	7				
28.20	25	7				
28.25	25	8				
28.30	25	8				
28.35	25	8				
28.40	25	8				
28.45	25	8				
28.50	25	9				
28.55	25	9				
28.60	25	9				
28.65	25	9				
28.70	25	10				
28.75	25	10				
28.80	25	10				
28.85	25	11				
28.90	25	11				
28.95	25	11				
29.00	50	11				
29.05	54	13	Peak of - 20	14		
29.10	59	14				
29.15	63	10	volume store			
29.20	68 70	18				
29.25	12	20				
29.00	70	23				
		1				

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP **that does not fit into one of the specific worksheets already provided** (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)

0.38	ас	A = Area draining to the practice
0.30	ас	A _i = Impervious area draining to the practice
0.79	decimal	I = Percent impervious area draining to the practice, in decimal form
0.76	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)
0.29	ac-in	WQV= 1" x Rv x A
1,042	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = Amount of rainfall. For WQF in NH, P = 1".
0.76	inches	Q = Water quality depth. Q = WQV/A
98	unitless	CN = Unit peak discharge curve number. CN =1000/(10+5P+10Q-10*[Q ² + 1.25*Q*P] ^{0.5})
0.2	inches	S = Potential maximum retention. S = (1000/CN) - 10
0.048	inches	Ia = Initial abstraction. Ia = 0.2S
6.0	minutes	T _c = Time of Concentration
700.0	cfs/mi ² /in	${\sf q}_{\sf u}$ is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
0.314	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac.

Designer's Notes:

For sizing of Focal Point #2 (Pond 11P) in conjunction with Focal Point design worksheet

FOCALPOINT New hampshire aot projects

- 1. Determine FocalPoint bed area (minimum 174 sf/acre of impervious area ex: 0.2 acres = 35 sf) See step 2 to determine if minimum size is appropriate.
 - Tributary impervious area:
 - Tributary pervious area:
 - Minimum FocalPoint bed area required: = ((A x 1.0) + (B x 0.4)) * 174
 - FocalPoint bed area provided:
 - Dimensions of proposed FocalPoint:

- = ______ ac (A) = ______ ac (B) = ______ sf = ______ sf = _____ ft x_____ ft
- 2. Model a Type II & III 24-hr rainfall event that generates the water quality volume to demonstrate that the entire storm volume is treated prior to activation of the overflow (typically set at 6 12 in above the mulch). Note: a 1.2 1.3 in rainfall event usually generates 1.0 in of runoff. Contact ACF for a sample HydroCAD node.

Size the Harco PVC domed overflow riser. Note: ACF recommends installation of a Fabco domed overflo	ow filter kit for overflow p	protection.
 Peak ponding depth from Type III 24-hr storm event: 	=	in
 Temporary storage volume provided at above depth: 	=	ft ³
	(typically 6 -	12 in)
 Temporary storage depth provided: 	=	in
 Type II & III 24-hr rainfall depth to generate WQv: 	=	in
• Water quality volume (WQv) goal:	=	ft ³

- - 6 in invert in elevation from FocalPoint:

for overflow protectio	n.
=	in
=	
ypically 6 - 12 in above mulch su	rface
=	_
(typically 3 ft below mulch surfa	ace)
_	

• _____ in invert out elevation:

3.

4. Flood control - peak flow attenuation of major storms

The treated flow and bypass flow can be routed to a detention system such as an open pond or a subsurface solution like an expanded R-Tank system. (contact ACF for additional information on designing expanded R-Tank systems)

- 5. Prepare a landscape plan for the FocalPoint bed area
- 6. Design review and installation oversight by manufacturer's representative
 - The design has been reviewed by ACF Environmental
 - Engineer will coordinate installation inspection with ACF Environmental

DESIGNING WITH FOCALPOINT IN NEW HAMPSHIRE

The New Hampshire Department of Environmental Services has approved the FocalPoint (High Performance Modular Biofiltration System) for use on AoT site development projects in the State of New Hampshire.

SIZING CRITERIA SUMMARY

- The surface area of the media within FocalPoint must be a minimum of 174 sf per 1.0 acre of impervious area (26 sf per 0.15 acres). The thickness of the media is to be no less than 1.5 ft (18 in).
- The system must be modelled in HydroCAD (or similar TR-55 modeling software) to demonstrate that the entire volume of a 1.22 in Type II or III 24-hr storm is treated prior to activation of the bypass/overflow (typically set at 6 12 in above the mulch surface). Note: A 1.22 in rainfall event typically generates 1.0 in of runoff.
- The R-Tank modular underdrain can be expanded beyond the footprint of the FocalPoint media bed for expanded infiltration and peak flow attenuation/detention post treatment.

FOCALPOINT SYSTEMS:

FOCALPOINT ACCESSORIES:

Pretreatment - Rain Guardian Turret

Pretreatment - Rain Guardian Foxhole

Pretreatment - PreTx

Bypass protection - Domed overflow with filter insert

For additional information please visit: www.acfenvironmental.com

Contact Rob Woodman - Senior Stormwater Engineer Cell: 207.272.4431 | Email: rwoodman@acfenv.com

Summary for Pond 10P: Focal Point #2

[90] Warning: Qout>Qin may require smaller dt or Finer Routing [87] Warning: Oscillations may require smaller dt or Finer Routing (severity=6)							
Inflow Area = 0.377 ac, 79.03% Impervious, Inflow Depth = 0.72" for FP2 WQF event Inflow = 0.31 cfs @ 12.09 hrs, Volume= 0.023 af Outflow = 0.32 cfs @ 12.12 hrs, Volume= 0.023 af, Atten= 0%, Lag= 1.7 min Primary = 0.32 cfs @ 12.12 hrs, Volume= 0.023 af Primary = 0.32 cfs @ 12.12 hrs, Volume= 0.023 af							
Routing by Peak Elev	/ Dyn-Stor-Inc <mark>= 37.92'</mark> @ 12	l method, T 2.12 hrs Su	ime Span= 0.00- urf.Area= 138 sf	-48.00 hrs Storage=	s, dt= 0.05 h = 39 cf	rs / 3	
Plug-Flow Center-of-	detention time Mass det. time	e= (not calc e= 0.8 min (culated: outflow p (828.1 - 827.3)	orecedes i	nflow)	37.92-37.75 = 0.17 ft * (12 in/ft) = 2.04 in	
Volume	Invert	Avail.Stora	age Storage De	escription			
#1	35.50'	27	7 cf 4.00'W x 1	5.00'L x 2	2.25'H Foca	Il Point	
#2	37 75'	77	7 of Surface B	owl (Pri si	0% VOIOS matic) ister	t below (Recalc)	
	51.15	10/	1 cf Total Avail	able Stora			
		10-			ige		
Elevation	Surf.A	Area	Inc.Store	Cum.Sto	ore		
(feet)	(s	q-ft) (cubic-feet)	(cubic-fe	et)		
37.75		60	0		0		
38.00		86	18		18		
38.50		148	59		77		
Device F	Routing	Invert	Outlet Devices				
#1 F	#1 Primary 34.75' 12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 34.75' / 34.50' S= 0.0250 '/' Cc= 0.900 n= 0.012 Flow Area= 0.79 sf						
#2 C	Device 1	35.50'	0' 100.000 in/hr Exfiltration over Surface area Phase-In= 0.10'				
#3 E	#3 Device 1 (38.00) (18.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads						
Primary OutFlow Max=0.30 cfs @ 12.12 hrs HW=37.85' TW=34.67' (Dynamic Tailwater) 1=Culvert (Passes 0.30 cfs of 4.81 cfs potential flow) 2=Exfiltration (Exfiltration Controls 0.30 cfs)							

-3=Orifice/Grate (Controls 0.00 cfs)

24029 PR CONDITION

Elevation	Surface	Storage	Elevation	Surface	Storage
	(54-11)			(54-11)	
33.30	60 60	0	30.10	100	04 60
35.55	00	1	30.10	100	00 65
33.0U 35.65	00	1	30.20	171	00 74
35.05	00	2	30.25	1//	71
35.70	60	2	38.30	183	11
35.75	60	3	38.35	189	83
35.80	60	4	38.40	196	90
35.85	60	4	38.45	202	97
35.90	60	5	38.50	208	104
35.95	60	5			
30.00	60	0			
30.05	60	1			
30.10	60	1			
30.15	60	8			
30.20	60	8			
36.25	60	9			
36.30	60	10			
30.35	60	10			
36.40	60	11			
30.45	60	11			
36.50	60	12			
36.55	60	13			
36.60	60	13			
36.65	60	14			
36.70	60	14			
36.75	60	15			
36.80	60	16			
36.85	60	16			
36.90	60	17			
36.95	60	17			
37.00	60	18			
37.05	60	19			
37.10	60	19			
37.15	60	20			
37.20	60	20			
37.25	60	21			
37.30	60	22			
37.35	60	22			
37.40	60 60	23			
37.43	00	23			
37.50	60 60	24			
37.55	00	20			
37.00	00	20			
37.00	00	20			
37.70	120	20			
31.13	120	21			
31.0U 27.0E	120	30	Peak el. = 3	37.92	
37.00	130	34	Volume sto	red = 39 cf	
37.90	130	37			
20 00	141	41	Overflow	- 38 0	
30.00 29.05	140	40		00.0	
30.05	102	50	volume bel	OW = 45 CI	
			I		

Stage-Area-Storage for Pond 10P: Focal Point #2

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP **that does not fit into one of the specific worksheets already provided** (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)

0.23	ас	A = Area draining to the practice
0.21	ас	A _I = Impervious area draining to the practice
0.92	decimal	I = Percent impervious area draining to the practice, in decimal form
0.88	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)
0.20	ac-in	WQV= 1" x Rv x A
740	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = Amount of rainfall. For WQF in NH, P = 1".
0.88	inches	Q = Water quality depth. Q = WQV/A
99	unitless	CN = Unit peak discharge curve number. CN =1000/(10+5P+10Q-10*[Q ² + 1.25*Q*P] ^{0.5})
0.1	inches	S = Potential maximum retention. S = (1000/CN) - 10
0.022	inches	Ia = Initial abstraction. Ia = 0.2S
6.0	minutes	T _c = Time of Concentration
700.0	cfs/mi ² /in	${\sf q}_{\sf u}$ is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
0.223	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac.

Designer's Notes:

For sizing of Jellyfish #1 (12P). See detail sheet within plan set.

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP **that does not fit into one of the specific worksheets already provided** (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)

0.21 ac	A = Area draining	to the practice
0.20 ac	A _I = Impervious a	rea draining to the practice
0.94 dec	imal I = Percent imper	vious area draining to the practice, in decimal form
0.90 unit	less Rv = Runoff coeffi	icient = 0.05 + (0.9 x I)
0.19 ac-i	n WQV= 1" x Rv x A	N Contraction of the second
686 cf	WQV conversion	(ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = Amount of rainfall. For WQF in NH, P = 1".
0.90	inches	Q = Water quality depth. Q = WQV/A
99	unitless	CN = Unit peak discharge curve number. CN =1000/(10+5P+10Q-10*[Q ² + 1.25*Q*P] ^{0.5})
0.1	inches	S = Potential maximum retention. S = (1000/CN) - 10
0.019	inches	la = Initial abstraction. la = 0.2S
6.0	minutes	T _c = Time of Concentration
700.0	cfs/mi ² /in	${\sf q}_{\sf u}$ is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
0.207	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac.

Designer's Notes:

For sizing of Jellyfish #1 (15P). See detail sheet within plan set.

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

	ас	Area of HSG A soil that was replaced by impervious cover	0.40"
	ас	Area of HSG B soil that was replaced by impervious cover	0.25"
1.81	ас	Area of HSG C soil that was replaced by impervious cover	0.10"
	ас	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.10	inches	Rd = Weighted groundwater recharge depth	
0.1809	ac-in	GRV = AI * Rd	
657 cf		GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Chamber System A: 3,600 cf storage below overflow & designed for infiltration Chamber System B: 2,130 cf storage below overflow & designed for infiltration

GRV provided = 3600+2130 = 5,730 cf >>> 657 cf required

Prepared by Jones & Beach Engineers Inc HydroCAD® 10.20-3c s/n 00762 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 2P: Infiltration System A

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
28.00 28.10 28.20	1,008 1,008 1,008	0 90 180	33.20 33.30 33.40	1,008 1,008 1,008	4,500 4,500 4,500
28.30 28.40 28.50	1,008 1,008 1,008	270 360	33.50 33.60	1,008 1,008	4,500 4,500
28.60 28.70	1,008 1,008 1,008	430 540 630			
28.80 28.90 29.00	1,008 1,008 1,008	720 810 900			
29.10 29.20 29.30	1,008 1,008 1,008	990 1,080 1,170			
29.40 29.50 29.60	1,008 1,008 1,008	1,260 1,350 1,440			
29.70 29.80 29.90	1,008 1,008 1.008	1,530 1,620 1,710			
30.00 30.10 30.20	1,008 1,008 1,008	1,800 1,890 1,980			
30.30 30.40 30.50	1,008 1,008 1,008	2,070 2,160 2,250			
30.60 30.70 30.80	1,008 1,008 1,008	2,340 2,430 2,520			
30.90 31.00 31.10	1,008 1,008 1,008	2,610 2,700 2,700			
31.20 31.30 31.40	1,008 1,008 1,008	2,730 2,880 2,970 2,060			
31.40 31.50 31.60	1,008 1,008 1,008	3,000 3,150 3,240			
31.80 31.90	1,008 1,008 1,008	3,330 3,420 3,510	Overflow e	el. = 32.0	
32.00 32.10 32.20	1,008 1,008 1,008	3,600 3,690 3,780	3,600 cf G	RV below	
32.30 32.40 32.50 32.60	1,008 1,008 1,008	3,960 4,050 4,140			
32.00 32.70 32.80	1,008 1,008 1,008	4,140 4,230 4,320 4,410			
33.00 33.10	1,008 1,008	4,500 4,500			

Stage-Area-Storage for Pond 4P: Infiltration System B

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	
23.25	672	0	25.85	672	1 560	
23.30	672	30	25.00	672	1,590	
23.35	672	60	25.00	672	1,000	
23.40	672	90	26.00	672	1,620	
23.45	672	120	26.00	672	1,000	
23 50	672	120	26.00	672	1,000	
23.55	672	180	26.10	672	1,710	
23.60	672	210	26.10	672	1,740	
23.65	672	240	26.25	672	1,770	
23.70	672	270	26.30	672	1,000	
23.75	672	300	26.35	672	1,000	
23.80	672	330	26.00	672	1,800	
23.85	672	360	26.45	672	1,000	
23.00	672	300	26.50	672	1,020	
23.95	672	420	26.50	672	1,000	
24.00	672	450	26.60	672	2 010	
24.00	672	430	26.65	672	2,010	
24.00	672	510	26.00	672	2,040	
24.10	672	540	26.75	672	2,070	
24.15	672	570	26.75 26.80	672	2,100	Overflow el. $= 26.8$
24.20	672	600	26.85	672	2,100	2,130 cf GRV below
24.20	672	630	26.00	672	2,100	_,
24.30	672	660	26.00	672	2,100	
24.00	672	690	20.00	672	2,220	
24.40	672	720	27.00	672	2,200	
24.40	672	750	27.00	672	2,200	
24.50	672	780	27.10	672	2,340	
24.00	672	810	27.10	672	2,340	
24.65	672	840	27.25	672	2,070	
24.00	672	870	27.20	672	2,400	
24.70	672	900	27.35	672	2,400	
24.70	672	930	27.00	672	2,400	
24.85	672	960	27.40	672	2,400	
24.00	672	990	27.50	672	2,400	
24.95	672	1 020	27.55	672	2,100	
25.00	672	1,020	27.60	672	2,400	
25.00	672	1,000	27.65	672	2,100	
25.00	672	1 110	27.70	672	2 400	
25.15	672	1 140	27 75	672	2 400	
25 20	672	1 170	27.80	672	2 400	
25.25	672	1 200	27.85	672	2,100	
25.30	672	1 230	27.90	672	2 400	
25.35	672	1 260	21.00	0.2	2,100	
25 40	672	1 290				
25.45	672	1,320				
25 50	672	1 350				
25.55	672	1,380				
25.60	672	1,410				
25.65	672	1,440				
25.70	672	1,470				
25.75	672	1,500				
25.80	672	1.530				
		.,				

APPENDIX IX

Infiltration Testing Data

Project #:	24029
Test Pit #:	60 0
Permeameter Test #:	1/3
Date:	102/24/24
Location:	exetp1
Soil Map Unit Series:	Scitico
Horizon: <u>B</u> /C	(circle one)

ONES& BE

Used constant For One tube - 2 on was producing unrealistic (Psuffs (typ.)

Data Collection Interval (circle one) :

30 Sec.

2 Min.

Calculation Formulas:

D = (AxB)/C

 $E = D \times 0.001056$

F = E / 2.54 Notes:

Mulitply "D" by 0.001056 for a conversion from cm³/hr to cm/hr Multiply "E" by 0.393701 for conversion fro cm/hr to in/hr

Project #: Test Pit #: Permeame	eter Test #:	24029 6010 3/3	JONES&BI	EACH
Date:		10/24/24	-	Province State
Location:		Exesei	-	
Soil Map U	Init Series:	Sciher		
Horizon:	B/C	(circle one)		
			1	
Outflow	Chamber(s)) Used (circle one) :		
Ass	sociated <u>Conv</u>	version <u>F</u> actor:		7/6-51-5
			Wed conclud for	12
Small	("1 on")	Both ("2 on")	Decisión ha	
(= 20).0cm²)	(= 105.0 cm^2)	one tibe - 2 on	
			has producing unrealistic	
			(es, its (typ.)	
Data Co	ollection Inte	erval (circle one) :		
30 Sec.		1 Min.	2 Min.	
				allast
				allo alla
	Test hole	profile:		
		Unit		
		0		
	1			
		10		1
		<u></u>		
	L	1		
				1 States
Calculation F	ormulas:			TU
D = (AxB)/C				
$E = D \times 0.0010$	056			and the second
F = E / 2.54				North I
Notes:	Mulitply "D)" by 0.001056 for a conv	version from cm ³ /hr to cm/hr	1.14.19
	Multiply "E	" by 0.393701 for conver	rsion fro cm/hr to in/hr	
		,	,	
				in D

Used constant For One tube - 2 on' has producing unrealisme (Psuffs (typ.)

NES&

ENGINEERS

Data Collection Interval (circle one) :

30 Sec.

1 Min.

2 Min.

Calculation Formulas:

D = (AxB)/C E = D x 0.001056 F = E / 2.54 Notes: M

Mulitply "D" by 0.001056 for a conversion from cm³/hr to cm/hr Multiply "E" by 0.393701 for conversion fro cm/hr to in/hr

Project #:	24029
Test Pit #:	6001
Permeameter Test #:	1/3
Date:	10/24/24
Location:	Gefl(
Soil Map Unit Series:	Boxfold
Horizon: <u>B/C</u>	(circle one)

Small ("1 on") $(= 20.0 \text{ cm}^2)$

Both ("2 on") (= 105.0 cm^2)

1 Min.

Data Collection Interval (circle one) :

30 Se

2 Min.

Calculation Formulas:

D = (AxB)/C $E = D \times 0.001056$ F = E / 2.54

Notes:

Mulitply "D" by 0.001056 for a conversion from cm³/hr to cm/hr Multiply "E" by 0.393701 for conversion fro cm/hr to in/hr

TP 6010 - Test #1

Height	Constant	Tim	ne	Outflow	Rate	(K _{sat})
cm	cm ²	Minutes	Hours	cm³/hr	cm/hr	in/hr
0						
12	20	1	0.016667	14400.0	15.2064	5.9868
19.2	20	2	0.033333	11520.0	12.1651	4.7894
24	20	3	0.05	9600.0	10.1376	3.9912

Outlier due to experimental error - Discard this test

Mean	4.9225
σ (Std. Dev.)	0.8201

Calculations:

Constant = 20 cm² for one tube, 105 cm² for two tubes two tubes used)

Hours = Minutes / 60

Outflow = (Height*Constant)/Hours

Ksat = Outflow*Glover Coefficient

Average of Tests 2&3 =	2.0 iph
With factor of safety of two =	1.0 iph

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

TP 6010 - Test #2

Height	Constant	Tim	ie	Outflow	Rate (K _{sat})
cm	cm ²	Minutes	Hours	cm³/hr	cm/hr	in/hr
0						
2.8	20	1	0.016667	3360.0	3.5482	1.3969
6.1	20	2	0.033333	3660.0	3.8650	1.5216
9.3	20	3	0.05	3720.0	3.9283	1.5466
12.4	20	4	0.066667	3720.0	3.9283	1.5466
15	20	5	0.083333	3600.0	3.8016	1.4967

Mean	1.5017	
σ (Std. Dev.)	0.0655	

Calculations:

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Outflow =	(Height*Constant)/Hours	Average of Tests 2&3 =	2.0 iph
Ksat =	Outflow*Glover Coefficient	With factor of safety of two =	1.0 iph

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

TP 6010 - Test 3

cm cm ² Minutes Hours cm ³ /hr cm/hr in/hr
0
5.8 20 1 0.016667 6960.0 7.3498 2.8936
11.3 20 2 0.033333 6780.0 7.1597 2.8188
17.1 20 3 0.05 6840.0 7.2230 2.8437
21.4 20 4 0.066667 6420.0 6.7795 2.6691
15 20 5 0.083333 3600.0 3.8016 1.4967

3.8016	1.4967
Mean	2.5444

σ (Std. Dev.)	0.0311

Calculations:

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Hours = Minutes / 60

Outflow = (Height*Constant)/Hours

Ksat = Outflow*Glover Coefficient

Average of Tests 2&3 =	2.0 iph	
With factor of safety of two =	1.	. 0 iph

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

TP 6007 - Test 1

Height	Constant	Tim	е	Outflow	Rate (K _{sat})
cm	cm ²	Minutes	Hours	cm³/hr	cm/hr	in/hr
0						
2	20	0.5	0.008333	4800.0	5.0688	1.9956
3.7	20	1	0.016667	4440.0	4.6886	1.8459
5.4	20	1.5	0.025	4320.0	4.5619	1.7960
6.6	20	2	0.033333	3960.0	4.1818	1.6464
8.1	20	2.5	0.041667	3888.0	4.1057	1.6164

Mean	1.7801
σ (Std. Dev.)	0.0848

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Outflow =	(Height*Constant)/Hours	Average mean Ksat =	2.9 iph
Ksat =	Outflow*Glover Coefficient	With factor of safety of two =	1.45 iph

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

TP 6007 - Test 2

Height	Constant	Tim	ie	Outflow	Rate (K _{sat})
cm	cm ²	Minutes	Hours	cm³/hr	cm/hr	in/hr
0						
3.8	20	0.5	0.008333	9120.0	9.6307	3.7916
7.5	20	1	0.016667	9000.0	9.5040	3.7417
9.8	20	1.5	0.025	7840.0	8.2790	3.2595
12.5	20	2	0.033333	7500.0	7.9200	3.1181
15.6	20	2.5	0.041667	7488.0	7.9073	3.1131

Mean	3.4048
σ (Std. Dev.)	0.2400

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Outflow =	(Height*Constant)/Hours	Average mean Ksat =	2.9 iph
Ksat =	Outflow*Glover Coefficient	With factor of safety of two =	1.45 iph

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

TP 6007 - Test 3

Height	Constant	Tim	e	Outflow	Rate ((K _{sat})
cm	cm ²	Minutes	Hours	cm³/hr	cm/hr	in/hr
0						
3.9	20	0.5	0.008333	9360.0	9.8842	3.8914
7.1	20	1	0.016667	8520.0	8.9971	3.5422
10.6	20	1.5	0.025	8480.0	8.9549	3.5255
14.4	20	2	0.033333	8640.0	9.1238	3.5921
17.5	20	2.5	0.041667	8400.0	8.8704	3.4923

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

Mean	3.6087
σ (Std. Dev.)	0.1687

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Outflow =	(Height*Constant)/Hours	Average mean Ksat =	2.9 iph
Ksat =	Outflow*Glover Coefficient	With factor of safety of two =	1.45 iph

TP 6001 - Test 1

Height	Constant	Tim	ie	Outflow	Rate	(K _{sat})
cm	cm ²	Minutes	Hours	cm³/hr	cm/hr	in/hr
0						
3.9	20	0.5	0.008333	9360.0	9.8842	3.8914
6.7	20	1	0.016667	8040.0	8.4902	3.3426
9.8	20	1.5	0.025	7840.0	8.2790	3.2595
13.1	20	2	0.033333	7860.0	8.3002	3.2678
16.5	20	2.5	0.041667	7920.0	8.3635	3.2927

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

Mean	3.4108
σ (Std. Dev.)	0.2804

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Outflow =	(Height*Constant)/Hours	Average mean Ksat =	3.3 iph	
Ksat =	Outflow*Glover Coefficient	With factor of safety of two =		1.65 iph

TP 6001 - Test 2

Height	Constant	Tim	е	Outflow	Rate (K _{sat})
cm	cm ²	Minutes	Hours	cm³/hr	cm/hr	in/hr
0						
3	20	0.5	0.008333	7200.0	7.6032	2.9934
5.8	20	1	0.016667	6960.0	7.3498	2.8936
9.1	20	1.5	0.025	7280.0	7.6877	3.0266
13	20	2	0.033333	7800.0	8.2368	3.2428
16.1	20	2.5	0.041667	7728.0	8.1608	3.2129

Mean	3.0739		
σ (Std. Dev.)	0.0565		

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Outflow =	(Height*Constant)/Hours	Average mean Ksat =	3.3 iph	
Ksat =	Outflow*Glover Coefficient	With factor of safety of two =		1.65 iph

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²
TP 6001 - Test 3

Height	Constant	Time		Outflow	Outflow Rate (K _{sat})	
cm	cm ²	Minutes Hours		cm³/hr	cm/hr	in/hr
0						
3.8	20	0.5	0.008333	9120.0	9.6307	3.7916
6.8	20	1	0.016667	8160.0	8.6170	3.3925
10.1	20	1.5	0.025	8080.0	8.5325	3.3592
13.7	20	2	0.033333	8220.0	8.6803	3.4174
17.2	20	2.5	0.041667	8256.0	8.7183	3.4324

Constant	20	cm^2
Glover Coefficient:	0.001056	1/cm ²

Mean	3.4786
σ (Std. Dev.)	0.1965

Calculations:

Constant = 20 cm² for one tube, 105 cm² for two tubes (two tubes used)

Hours = Minutes / 60

Outflow =	(Height*Constant)/Hours	Average mean Ksat =	3.3 iph	
Ksat =	Outflow*Glover Coefficient	With factor of safety of two =		1.65 iph

APPENDIX X

BMP Pollutant Removal Information

Pollutant R	emoval Efficiencies for Best M for Use in Pollutant Loading	lanagem Analysis	ent Practices	Values Load	s Accept ing Ana	ted for lyses
BMP Type	BMP	Notes	Lit. Ref.	TSS	TN	ТР
	Wet Pond		B, F	70%	35%	45%
Pollutant R BMP Type Stormwater Ponds Stormwater Wetlands Infiltration Practices Filtering Practices	Wet Extended Detention Pond		А, В	80%	55%	68%
Ponds	Micropool Extended Detention Pond	TBA				
	Multiple Pond System	TBA				
	Pocket Pond	TBA				
	Shallow Wetland		A, B, F, I	80%	55%	45%
Stormwater	Extended Detention Wetland		A, B, F, I	80%	55%	45%
Wetlands	Pond/Wetland System	TBA				
	Gravel Wetland		Н	95%	85%	64%
	Infiltration Trench (≥75 ft from surface water)		B, D, I	90%	Ilues Accepted 1 .oading Analyse SS TN T 35% 45 35% 55% 68 35% 55% 68 35% 55% 45 35% 55% 45 35% 55% 45 35% 55% 60 35% 60% 65 35% 10% 60 35% 60% 65 35% 10% 65 35% 10% 65 35% 10% 65 35% 10% 45 35% 10% 65 35% 10% 65 35% 10% 65 35% 10% 45 35% 10% 65 35% 10% 45 35% 10% 45 35% 10% 45 35% <td< td=""><td>60%</td></td<>	60%
Infiltration Practices	Infiltration Trench (<75 ft from surface water)		B, D, I	90%	10%	60%
	Infiltration Basin (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Infiltration Basin (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Dry Wells			90%	55%	60%
	Drip Edges			90%	55%	60%
	Aboveground or Underground Sand Filter that infiltrates WQV (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Aboveground or Underground Sand Filter that infiltrates WQV (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Aboveground or Underground Sand Filter with underdrain		A, I, F, G, H	85%	10%	45%
Filtering	Tree Box Filter	TBA				68% 45% 64% 60% 60% 65% 65% 65% 65% 65% 65% 65%
Practices	Bioretention System		<mark>I, G, H</mark>	<mark>90%</mark>	<mark>65%</mark>	<mark>65%</mark>
	Permeable Pavement that infiltrates WQV (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Permeable Pavement that infiltrates WQV (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Permeable Pavement with underdrain		Use TN and TP values for sand filter w/ underdrain and outlet pipe	90%	10%	45%

Pollutant R	Pollutant Removal Efficiencies for Best Management Practices for Use in Pollutant Loading Analysis					Values Accepted for Loading Analyses		
BMP Type	ВМР	Notes	Lit. Ref.	TSS	TN	ТР		
Treatment Swales	Flow Through Treatment Swale	TBA						
Vegetated Buffers	Vegetated Buffers		A, B, I	73%	40%	45%		
	Sediment Forebay	TBA						
	Vegetated Filter Strip		A, B, I	73%	40%	45%		
	Vegetated Swale		A, B, C, F, H, I	65%	20%	25%		
Pre- Treatment Practices	Flow-Through Device - Hydrodynamic Separator		A, B, G, H	35%	10%	5%		
	Flow-Through Device - ADS Underground Multichamber Water Quality Unit (WQU)		G, H	72%	10%	9%		
	Other Flow-Through Devices	TBA						
	Off-line Deep Sump Catch Basin		J, K, L, M	15%	5%	5%		

REGION 1 BOSTON, MA 02109 Dated by Signature

MEMORANDUM

SUBJECT:	FocalPoint Crediting Direction
FROM:	Damien Houlihan, Stormwater Permits Section Water Division
то:	Robert J. Woodman Director - Engineering and Green Stormwater Infrastructure Ferguson Waterworks

On June 7, 2021, Ferguson Waterworks (Ferguson) submitted a request to EPA Region 1 regarding the use of the FocalPoint biofiltration system (also known also as the High Performance Modular Biofiltration System, hereinafter "FocalPoint biofiltration system"). Based on the review of documents submitted by Ferguson, EPA Region 1 finds that entities wishing to deploy the FocalPoint biofiltration system may calculate phosphorus and nitrogen reductions under the 2016 Massachusetts Municipal Separate Storm Sewer Permit (MA MS4 Permit) and the 2017 New Hampshire Municipal Separate Storm Sewer Permit (NH MS4 Permit) using the performance quantification for Enhanced Biofiltration found on Table 3-20 and Figure 3-15 of Attachment 3 to Appendix F of the MA MS4 permit (also attached to this document for reference) provided the following standard FocalPoint design requirements and other conditions are met:

- Ferguson's FocalPoint biofiltration systems are to be designed with pretreatment to remove coarse sediment and debris before they reach and prematurely close the filter bed.
 Pretreatment measures must be designed to dissipate velocities and spread water out over a 2 to 4 ft width.
- 2. Ferguson's FocalPoint biofiltration systems are to be designed with a minimum and maximum surface ponding depths of 3 inches and 18 inches, respectively.
- 3. Ferguson's FocalPoint biofiltration systems are to be separated or otherwise isolated from the groundwater table to ensure that groundwater does not inundate the filter bed either using an impermeable liner or physical separation.
- 4. Ferguson's FocalPoint biofiltration systems are to be designed such that the system bed area is sized to be a minimum of 174 square feet per acre of tributary area. Stormwater modelling software shall be used to demonstrate that the runoff volume goal is treated prior to bypass.
- 5. System maintenance of Ferguson's FocalPoint biofiltration systems should occur once every 6 months, at a minimum, and filter media and pretreatment measures shall be replaced such that the performance of the systems are maintained as originally designed.

6. Stormwater quality monitoring must be used to ensure system performance has not declined over time. EPA recommends this monitoring commence once the filter bed media reaches two (2) years in age to ensure system performance has not declined. All monitoring data must be submitted to EPA by the entity claiming pollution reduction credit for the FocalPoint biofiltration system and filter media shall be replaced if monitoring data shows a decline in performance from original design.

This pollution reduction crediting of the FocalPoint biofiltration system is consistent with the Alternative Methods request process contained in Attachment 3 to Appendix F in the MA MS4 Permit and Attachment 3 to Appendix F of the NH MS4 Permit and may be used unless EPA Region 1 requires an alternative pollution reduction crediting methodology based on new or additional modeling of high-flow-rate filtering systems in a future NPDES permit. All stormwater quality monitoring data shall be submitted to EPA consistent with the requirements of the MA MS4 Permit or the NH MS4 Permit.

 Table 3- 20: Enhanced Bio-filtration* with Internal Storage Reservoir (ISR) BMP Performance Table

Enhanced Bio-filtration* w/ ISR BMP Performance Table: Long-Term Phosphorus & Nitrogen Load Reduction								
BMP Capacity: Depth of Runoff from Impervious Area (inches)	0.1	0.2	0.4	0.6	0.8	1.0	1.5	2.0
Cumulative Phosphorus Load Reduction	19%	34%	53%	64%	71%	<mark>76%</mark>	84%	89%
Cumulative Nitrogen Load Reduction	32%	44%	58%	66%	71%	<mark>75%</mark>	82%	86%

*Filter media augmented with phosphorus sorbing materials to enhance phosphorus removal.

Figure 3-15: BMP Performance Curve: Enhanced Bio-filtration with Internal Storage Reservoir (ISR) BMP Performance Table

APPENDIX XI

Stormwater Operations and Maintenance Manual

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

STORMWATER MANAGEMENT OPERATIONS AND MAINTENANCE MANUAL

"Lilac Place" 76 Portsmouth Ave. Exeter, NH 03833 Tax Map 137, Lots 4 & 75

Prepared for:

Green & Company 11 Lafayette Road North Hampton, NH 03862

> Prepared by: Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885 (603) 772-4746 November 4, 2024 JBE Project No. 24029

Inspection and Maintenance of Facilities and Property

A. Maintenance of Common Facilities or Property

1. The Condominium Association, future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. The Association, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. The annual report and certification shall be submitted with three copies to the Town Planner by January 31st of each year.

B. General Inspection and Maintenance Requirements

- 1. Permanent stormwater and sediment and erosion control facilities to be maintained on the site include, but are not limited to, the following:
 - a. Paved surfaces
 - b. Vegetation and landscaping
 - c. Sediment Forebays
 - d. Bioretention systems
 - e. Drain Manholes
 - f. Stone Drip Edges
 - g. Culverts
 - h. Rip-Rap Outlet Protection Aprons
 - i. Detention Pond
 - j. Convergent Pre-Tx Pre-treatment units
 - k. Focal Points
 - 1. Contech Jellyfish
 - m. Shea Concrete Galley Chambers
 - n. Eco-Paver Patio
- 2. Maintenance of permanent measures shall follow the following schedule:
 - a. Normal winter pavement maintenance including plowing and snow removal. Pavement sweeping at the end of every winter, preferably before the start of the spring rain season.
 - b. **Annual inspection** of the site for erosion, destabilization, settling, and sloughing. Any needed repairs are to be conducted immediately. **Annual inspection** of site's vegetation and landscaping. Any areas that are bare shall be reseeded and mulched with hay or, if the case is extreme, loamed and seeded or sodded to ensure adequate vegetative cover. Landscape specimens shall be replaced in kind, if they are found to be dead or dying.
 - c. Cleaning Criteria for all Sedimentation Forebays: Sediment shall be removed from the sedimentation chamber (forebay) when it accumulates to a depth of more than 12 inches (30 cm) or 10 percent of the pretreatment volume. The sedimentation forebay shall be

cleaned of vegetation if persistent standing water and wetland vegetation becomes dominant. The cleaning interval is once every year. A dry sedimentation forebay is the optimal condition while in practice this condition is rarely achieved. The sedimentation chamber, forebay, and treatment cell outlet devices shall be cleaned when drawdown times exceed 60 to 72 hours. Materials can be removed with heavy construction equipment; however, this equipment shall not track on the wetland surface. Revegetate disturbed areas as necessary. Removed sediments shall be dewatered (if necessary) and disposed of in an acceptable manner.

- d. Bioretention Systems:
 - Visually inspect monthly and repair erosion. Use small stones to stabilize erosion along drainage paths.
 - Check the pH once a year if grass is not surviving. Apply an alkaline product, such as limestone, if needed.
 - Re-seed any bare areas by hand as needed.
 - Immediately after the completion of cell construction, water grass for 14 consecutive days unless there is sufficient natural rainfall.
 - Once a month (more frequently in the summer), the land owner or Association shall visually inspect vegetation for disease or pest problems and treat as required.
 - During times of extended drought, look for physical features of stress. Water in the early morning as needed.
 - Weed regularly, if needed.
 - After rainstorms, inspect the cell and make sure that drainage paths are clear and that ponding water dissipates over 4-6 hours. (Water may pond for longer times during the winter and early spring.)
 - Twice annually, inspect the outlet control structures to ensure that they are not clogged and correct any clogging found as needed.
 - Any debris and sediment accumulations shall be removed from the outlet structures, overflow risers, and emergency spillways and disposed of properly.
 - Inspect outlet structure for deterioration and or clogging.
 - If erosion is evident on the berm or emergency spillway, stabilize the affected area by seeding. Trees must not be allowed to grow in these areas.
 - KEEP IN MIND, THE BIORETENTION CELL IS NOT A POND. IT SHALL NOT PROVIDE A BREEDING GROUND FOR MOSQUITOES. MOSQUITOES NEED AT LEAST FOUR (4) DAYS OF STANDING WATER TO DEVELOP AS LARVA.
- e. Annual inspection of drain manholes to determine if they need to be cleaned. Manholes shall be cleaned of any material upon inspection. Manholes can be cleaned either manually or by specially designed equipment including, but not limited to, bucket loaders and vacuum pumps. Before any materials can be disposed, it is necessary to perform a detailed chemical analysis to determine if the materials meet the EPA criteria for hazardous waste. This will help determine how the materials shall be stored, treated, and disposed.

f. Stone drip edges:

Some units feature stone drip edges to collect roof runoff into a pipe in order to direct it into the stone areas underneath the unit decks. These practices shall be lined and are not intended for infiltration. The following course of action will help assure that the roof drip edges are maintained to preserve its effectiveness.

In the spring and fall, visually inspect the area around the edges and repair any erosion. Use small stones to stabilize erosion along drainage paths. Inspect stone area to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock shall be replaced, or additional rock added in order to maintain the structure(s) in their undamaged state. Woody vegetation shall not be allowed to become established in stone areas, and/or any debris removed from the void spaces between the stones

- g. **Inspection** of culvert inlets and outlets at least **once per month** during the rainy season (March to November). Any debris is to be removed and disposed of properly.
- h. Rock riprap shall be **inspected annually** in order to ensure that it has not been displaced, undermined, or otherwise damaged. Displaced rock shall be replaced, or additional rock added in order to maintain the structure(s) in their undamaged state. Woody vegetation must not be allowed to become established in riprap areas, and/or any debris removed from the void spaces between the rocks. If the riprap is adjacent to a stream or other waterbody, the water shall be kept clear of obstructions, debris, and sediment deposits
- i. Detention Pond: Regularly mow this BMP. If the detention pond does not drain within 72 hours following a rainfall event, then a Professional Engineer shall assess the condition of the facility to determine measures required to restore function, including but not limited to removal of accumulated sediments or reconstruction of the basin.
- j. Convergent Pre-T Pre-treatment Units: See attached inspection and maintenance guidance document.
- k. Focal Point: See attachment inspection and maintenance guidance document.
- 1. Contech Jellyfish: See attached inspection and maintenance guidance document.
- m. Shea Concrete Galley Chambers: Shea Concrete Galley Chambers: Once annually, open the inspection ports and visually inspect the condition of the stone base. If more than 12" of sediment is observed, plug the outlet and flush the system thoroughly. Pump water into system until at least 1" of standing water

covers the system bottom. Repeat at both inspection ports and pump out backflush water. Capture sediment-laden water for proper disposal according to local state, and EPA regulation. Additionally, vacuum all adjacent manhole structures.

n. Eco-Paver Patios:

The following recommendations will help assure that the permeable pavers are maintained to preserve their hydrologic effectiveness.

- Sanding for winter traction is prohibited. Deicing is permitted (NaCl, MgCl₂, or equivalent). Reduced salt application is possible and can be a cost savings for winter maintenance. Nontoxic, organic deicers, applied either as blended, magnesium chloride-based liquid products or as pretreated salt, are preferable.
- The paver surface shall be vacuumed 1 time per year, and at any additional times sediment is spilled, eroded, or tracked onto the surface.
- Planted areas adjacent to pervious pavers shall be well maintained to prevent soil washout onto the pavers. If any bare spots or eroded areas are observed within the planted areas, they shall be replanted and/or stabilized at once.
- Immediately clean any soil deposited on pavers. Superficial dirt does not necessarily clog the paver voids. However, dirt that is ground in repeatedly by tires can lead to clogging. Therefore, trucks or other heavy vehicles shall be prevented from tracking or spilling dirt onto the pavers.
- Do not allow construction staging, soil/mulch storage, etc. on unprotected paver surface. Contractor to laydown tarps, plywood or removable item and take care not to track material onto unprotected pavement.
- Written and verbal communication to the porous paver's future owner must make clear the paver's special purpose and special maintenance requirements such as those listed here.

See attached sample forms as a guideline.

Any inquiries in regards to the design, function, and/or maintenance of any one of the abovementioned facilities or tasks shall be directed to the project engineer:

Jones & Beach Engineers, Inc. 85 Portsmouth Avenue P.O. Box 219 Stratham, NH 03885

T#: (603) 772-4746 F#: (603) 772-0227

Commitment to maintenance requirements

I agree to complete and/or observe all of the required maintenance practices and their respective schedules as outlined above.

Signature

Print Name

Title

Date

Annual Operations and Maintenance Report

The Condominium Association, future owners and assigns are responsible to perform the maintenance obligations or hire a Professional Engineer to review the site on an annual basis for maintenance and certification of the stormwater system. The Association, future owners and assigns shall keep receipts and records of all maintenance companies hired throughout the year to submit along with the following form. The annual report and certification shall be submitted with three copies to the Town Planner by January 31st of each year.

Construction Activity	Date of Inspection	Who Inspected	Findings of Inspector
Paved Surfaces			
Landscaping			
Sediment Forebay			
Bioretention Pond #1			
Bioretention Pond #2			

Bioretention Pond #3		
Drain Manhole #1		
Drain Manhole #2		
Drain Manhole #3		
Drain Manhole #4		
Drain Manhole #5		
Stone Drin Edge		
Stone Drip Lage		

Culvert inlet #1			
Culvert inlet #2			
Curvent innet #2			
Culvert inlet #3			
Culvert outlet #1			
Culvert outlet #3			
Culvert outlet #3			
	1		

Culvert outlet #4		
Culvert outlet #5		
Culvert outlet #6		
C1		
Culvert outlet #/		
Rip Rap Outlet Protection		
Apron #1		
Rip Rap Outlet Protection]
Aprop #2		
Apron #2		

	1	1	
Rip Rap Outlet Protection			
Apron #3			
_			
Rip Rap Outlet Protection			
Apron #4			
•			
Rip Rap Outlet Protection			
Apron #5			
•			
Rip Rap Outlet Protection			
Apron #6			
-			
Rip Rap Outlet Protection			
Apron #/			
Detention Pond			
	1	1	

Pre-Tx #1		
Pre-Tx #2		
Focal Point #1		
F 1 D : (//2		
Focal Point #2		
Jellyfish #1		
5		
Jellyfish #2		
5011y11511 /12		
Shop Comparate Caller	 	
Snea Concrete Galley		
Chamber System A		
5		

	1	
Shea Concrete Galley		
Chamber System B		
Chamber System D		
Shaa Camanata Callary		
Shea Concrete Galley		
Chamber System C		
5		
Shea Concrete Galley		
Shea Coherete Ganey		
Chamber System D		
Eco-Paver Patio		
Other (release resta)		
Other (please note):		

Regular Inspection and Maintenance Guidance for Bioretention Systems / Tree Filters

Maintenance of bioretention systems and tree filters can typically be performed as part of standard landscaping. Regular inspection and maintenance is critical to the effective operation of bioretention systems and tree filters to insure they remain clear of leaves and debris and free draining. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (I.E., drought), regional hydrologic conditions, and the upstream land use.

ACTIVITIES

The most common maintenance activity is the removal of leaves from the system and bypass structure. Visual inspections are routine for system maintenance. This includes looking for standing water, accumulated leaves, holes in the soil media, signs of plant distress, and debris and sediment accumulation in the system. Mulch and/or vegetation coverage is integral to the performance of the system, including infiltration rate and nutrient uptake. Vegetation care is important to system productivity and health.

ACTIVITY	FREQUENCY
A record should be kept of the time to drain for the system completely after a storm event. The system should drain completely within 72 hours.	
Check to insure the filter surface remains well draining after storm event. Remedy : If filter bed is clogged, draining poorly, or standing water covers more than 15% of the surface 48 hours after a precipitation event, then remove top few inches of discolored material. Till or rake remaining material as needed	After every major storm in the first few months, then biannually.
Check inlets and outlets for leaves and debris	
Remedy : Rake in and around the system to clear it of debris. Also, clear the inlet and overflow if obstructed.	
Check for animal burrows and short circuiting in the system Remedy : Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted.	Quarterly initially, biannually,
Check to insure the filter bed does not contain more than 2 inches accumulated material	frequency adjusted as needed after 3 inspections
been removed, replace media with either mulch or a (50% sand, 20% woodchips, 20% compost, 10% soil) mixture.	
During extended periods without rainfall, inspect plants for signs of distress.	
Remedy : Plants should be watered until established (typical only for first few months) or as needed thereafter.	
Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning. Remedy : Repair or replace any damaged structural parts, inlets, outlets, sidewalls.	Annually
Check for robust vegetation coverage throughout the system. Remedy : If at least 50% vegetation coverage is not established after 2 years, reinforcement planting should be performed.	
Check for dead or dying plants, and general long term plant health. Remedy : This vegetation should be cut and removed from the system. If woody vegetation is present, care should be taken to remove dead or decaying plant Material. Separation of Herbaceous vegetation rootstock should occur when overcrowding is observed.	As needed

1/15/2011, University of New Hampshire Stormwater Center

CHECKLIST FOR INSPECTION OF BIORETENTION SYSTEM / TREE FILTERS			
Location:		Inspect	or:
Date: Time:		Site Co	nditions:
Date Since Last Rain Event:			
Inspection Items	Satisfac Unsatisf	tory (S) or actory (U)	Comments/Corrective Action
1. Initial Inspection After Planting and Mulching			
Plants are stable, roots not exposed	S	U	
Surface is at design level, typically 4" below overpass	S	U	
Overflow bypass / inlet (if available) is functional	S	U	
2. Debris Cleanup (2 times a year minimum, Spring & Fall)			
Litter, leaves, and dead vegetation removed from the system	S	U	
Prune perennial vegetation	S	U	
3. Standing Water (1 time a year, After large storm events)			
No evidence of standing water after 72 hours	S	U	1
4. Short Circuiting & Erosion (1 time a year, After large storm	events)		
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	1
5. Drought Conditions (As needed)			
Water plants as needed	s	U	
Dead or dying plants			
6. Overflow Bypass / Inlet Inspection (1 time a year, After large	storm ev	ents)	
No evidence of blockage or accumulated leaves	S	U	
Good condition, no need for repair	S	U	
7. Vegetation Coverage (once a year)			
50% coverage established throughout system by first year	S	U	
Robust coverage by year 2 or later	S	U	
8. Mulch Depth (if applicable)(once every 2 years)			
Mulch at original design depth after tilling or replacement	s	U	
9. Vegetation Health (once every 3 years)			
Dead or decaying plants removed from the system	s	U	
10. Tree Pruning (once every 3 years)			
Prune dead, diseased, or crossing branches	S	U	
Corrective Action Needed			Due Date
1.			
2.			
3.			

1/15/2011, University of New Hampshire Stormwater Center

Deicing Log

Date Applied	Type of Deicing Material	Amount Applied

CONTROL OF INVASIVE PLANTS

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

Background:

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

UNIVERSITY of NEW HAMPSHIRE Methods for Disposing COOPERATIVE EXTENSION Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

 Tatarian honeysuckle

 Lonicera tatarica

 USDA-NRCS PLANTS Database / Britton, N.L., and

 A. Brown. 1913. An illustrated flora of the northern

 United States, Canada and the British Possessions.

 Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit <u>www.nhinvasives.org</u> or contact your UNH Cooperative Extension office.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic

Japanese knotweed Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676.

and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well-rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for years in areas where removal and disposal took place.

Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle	Fruit and Seeds	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile.
(Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)		 Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn.
		 After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.

Non-Woody Plants	Method of Reproducing	Methods of Disposal
 garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort 	Fruits and Seeds	 Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
 (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum) 		 During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
common reed (<i>Phragmites australis</i>) Japanese knotweed (<i>Polygonum cuspidatum</i>) Bohemian knotweed (<i>Polygonum x bohemicum</i>)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	 Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.

January 2010

UNH Cooperative Extension programs and policies are consistent with pertinent Federal and State laws and regulations, and prohibits discrimination in its programs, activities and employment on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sex, sexual orientation, or veteran's, marital or family status. College of Life Sciences and Agriculture, County Governments, NH Dept. of Resources and Economic Development, Division of Forests and Lands, NH Fish and Game ,and U.S. Dept. of Agriculture cooperating.

APPENDIX XII

Pre- and Post-Construction Watershed Plans

0	11/4/24	ISSUED FOR REVIE
EV.	DATE	REVISION

